Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (4): 791-796    DOI: 10.11720/wtyht.2015.4.22
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
基于稳定逆时传播算子的黏声介质最小二乘逆时偏移
邓文志1, 李振春1, 王延光2, 孙小东1
1. 中国石油大学(华东) 地震波传播与成像实验室, 山东 青岛 266580;
2. 中国石化胜利油田分公司 物探研究院, 山东 东营 257068
The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator
DENG Wen-Zhi1, LI Zhen-Chun1, WANG Yan-Guang2, SUN Xiao-Dong1
1. SWPI, China University of petroleum (East China), Qingdao 266580, China;
2. GRI of SINOPEC Shengli Oilfield Branch, Dongying 257068, China
全文: PDF(1075 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于GSLS模型黏声介质二阶拟微分方程,采用伪谱法进行数值模拟。针对黏声介质逆时传播过程中产生的高频不稳定问题,提出加入规则化算子对其进行消除的方法,构建了稳定的逆时传播算子。在最小二乘反演的基础上,将黏声介质逆时偏移与最小二乘思路相结合,发展了带有振幅补偿的黏声介质最小二乘逆时偏移(LSRTM)。Marmousi模型结果表明:相对于常规最小二乘逆时偏移,黏声介质最小二乘逆时偏移校正了地层的黏滞性,得到了更加精确可靠的保幅成像剖面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Based on a single SLS isotropic medium second-order pseudo-differential equation,the authors used the pseudo-spectral method to calculate numerical simulation.The authors propose introduction of regularization operator method to eliminate high-frequency instability caused by the backward propagation inverse process so as to build a stable reverse-time propagator and to achieve the amplitude compensating visco-acoustic medium least-squares reverse time migration.Marmousi model shows that,compared with least-squares reverse-time migration visco-acoustic least-squares reverse-time migration can correct the effect of viscosity and produce more accurate and better reliable amplitude preservation imaging section.

收稿日期: 2014-09-10      出版日期: 2015-08-10
:  P631.4  
基金资助:

国家自然科学基金项目(41374122);国家科技重大专项项目(2011ZX05006-002)

作者简介: 邓文志(1989-),男,湖南人,现为中国石油大学(华东)硕士研究生,主要从事黏介质地震波传播与成像方面的研究工作。
引用本文:   
邓文志, 李振春, 王延光, 孙小东. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4): 791-796.
DENG Wen-Zhi, LI Zhen-Chun, WANG Yan-Guang, SUN Xiao-Dong. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator. Geophysical and Geochemical Exploration, 2015, 39(4): 791-796.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.4.22      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I4/791

[1] Carcione J M.Wave propagation in anisotropic linear viscoelastic media:Theory and simulated wavefields[J].Geophysical Journal International,1990,101(3):739-750.

[2] 孙成禹.地震波传播理论与方法[M].东营:中国石油大学出版社,2007.

[3] Bickel S H,Natarajan R R.Plane-wave Q deconvolution[J].Geophysics,1985,50(6):1426-1439.

[4] Hargreaves N D,Calvert A J.Inverse Q filtering by Fourier transform[J].Geophysics,1991,56(4):519-527.

[5] 王珊,于承业,王云专,等.稳定有效的反Q滤波方法[J].物探与化探,2009,33(6):696-699.

[6] Dai N,West G F.Inverse Q migration[C]//Expanded Abstracts of the 64th SEG Annual International Meeting,1994:1418-1421.

[7] Traynin P J,Reilly J M.Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration[C]//Expanded Abstracts of the 78th SEG Annual International Meeting,2008:2412-2416.

[8] Xie Y,Xin K,Sun J,et al.3D prestack depth migration with compensation forf requency dependent absorption and dispersion[C]//Expanded Abstracts of the 79th SEG Annual International Meeting,2009:2919-2922.

[9] Zhang J,Wu J,Li X.Compensation for absorption and dispersion in prestack migration:An effective Q approach[J].Geophysics,2013,78(1):S1-S14.

[10] 杨午阳.F-X 域黏弹性波动方程保幅偏移[J].石油物探,2003,42(3):285-288.

[11] 孙天真,谷玉田,张惠欣,等.基于黏声介质的反Q滤波叠前深度偏移方法研究[J].石油物探,2013,52(3):275-279.

[12] 郭恺,娄婷婷.双复杂介质条件下的反Q滤波偏移延拓算子研究[J].物探与化探,2014,38(3):571-576.

[13] 屈念念,李家斌.基于P+S 波震源的弹性波叠前逆时偏移方法[J].物探与化探,2013,37(5):859-865.

[14] Deng F,McMechan G A.True-amplitude prestack depth migration[J].Geophysics,2007,72(3):S155-S166.

[15] Fletcher R P,Nichols D,Cavalca M.Wavepath-consistent effective Q estimation for Q compensated reserve-time migration[C]//Expanded Abstracts of the 74th EAGE Annual International Conference and Exhibition,2012.

[16] Zhang Y, Zhang H.Compensating for visco-acoustic effects in reverse-time migration[C]//Expanded Abstracts of the 80th SEG Annual International Meeting,2010:3160-3164.

[17] Zhu T Z,Harris J M,Biondi B.Q-compensated reverse-time migration[J].Geophysics,2014,73(9):S77-S87.

[18] Claerbout J F.Earth soundings analysis:Processing versus inversion[M].Blackwell Science,1992.

[19] Bamberger G,Chavent C,Hemon,et al.Inversion of normal incidence seismograms[J].Geophysics,1982,47(5):757-770.

[20] 杨其强,张叔伦.最小二乘傅立叶有限差分偏移[J].地球物理学进展,2008,23(2):433-437.

[21] Chavent G,Plessix R E.An optimal true-amplitude least-squares pre-stack depth-migration operator[J].Geophysic,1999,64(2):508-515.

[22] Yao G,Jakubowicz H.Non-linear least-squares reverse-time migration[C]//Expanded Abstracts of the 82nd SEG Annual International Meeting,2012.

[23] Dai W,Schuster G T.Plane-wave least-squares reverse time migration[J].Geophysics,2013,78(4):S165-S177.

[24] Zhang D L,Schuster G T.Least-squares reverse time migration of multiples[J].Geophysics,2014,79(1):S11-S21.

[25] 黄建平,曹晓莉,李振春,等.最小二乘逆时偏移在近地表高精度成像中的应用[J].石油地球物理勘探,2014,49(1):107-112.

[26] Dai W,Huang Y S,Schuster G T.Least-squares reverse time migration of marine data with frequency-selection encoding[J].Geophysics,2013,78(4):S233-S242.

[27] Dai W,Wang X,Schuster G T.Least-squares migration of multisource data with a deblurring filter[J].Geophysics,2011,76(5):135-146.

[28] Schuster G T,Huang Y,Dai W,et al.Theory of multisource crosstalk reduction by phase-encoded statics[J].Geophysical Journal International,2011,184(2):1289-1303.

[29] Dai W,Fowler P,Schuster G T.Multi-source least-squares reverse time migration[J].Geophysical Prospecting,2012,60(4):681-695.

[30] Bai J,Chen G,Yingst D,et al.Attenuation compensation in viscoacoustic reverse time migration[C]//Expanded Abstracts of the 83rd SEG Annual International Meeting,2013:3825-3830.

[31] Carcione J.Wave fields in real media:wave propagation in anisotropic,anelastic and porous media[M].Elsevier Ltd:Pergamon Press,2001.

[32] Lou M,Rial J A.Modelling elastic wawe propagation in inhomogeneous anisotyopic media by the pseudospectral method[J].Geophysics,120(10):60-72.

[33] Carcione J M.A generalization of the Fourier pseudospectral method[J].Geophysics,2010,75(6):A53-A56.

[34] Liu F Q,Zhang S,Morton A,et al.Anti-dispersion wave equation for modelling and reverse-time migration[C]//Expanded Abstracts of the 78th SEG Annual International Meeting,2008:2277-2281.

[35] Lindeberg T.Scale-space theory in computer vision[M].Kluwer Academic Publisher,1994.

[36] Beydoun W B,Mendes M.Elastic ray-born l2-migration/inversion[J].Geophysical Journal International,1989,97(1):151-160.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com