Please wait a minute...
E-mail Alert Rss
 
物探与化探  2012, Vol. 36 Issue (6): 934-940    DOI: 10.11720/wtyht.2012.6.09
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
高阶旋转交错网格有限差分方法模拟TTI介质中横波分裂
李敏1,2, 刘洋1,2
1. 中国石油大学 油气资源与探测国家重点实验室, 北京 102249;
2. 中国石油大学 CNPC物探重点实验室, 北京 102249
MODELING OF THE S-WAVE SPLITTING IN TTI MEDIA USING HIGH-ORDER ROTATED STAGGERED GRID SCHEME
LI Min1,2, LIU Yang1,2
1. State Key Lab of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
2. CNPC Key Lab of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China
全文: PDF(928 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 笔者给出了一种能够模拟弹性波在任意各向异性介质中传播的二维三分量高阶有限差分算法。相对于常规交错网格有限差分方法,旋转交错网格有限差分方法在介质具有强差异性时能更精确地模拟地震波的传播,避免常规交错网格中因对弹性系数进行插值而带来的误差。采用高阶旋转交错网格有限差分方法模拟并分析了零偏移距横波分裂现象随裂缝介质方位角和倾角变化的响应特征。结果表明:结合完全匹配层(PML)吸收边界条件的高阶旋转交错网格有限差分方法能获得高精度的地震波场模拟数据,并且在边界具有良好的吸收效果;横波分裂现象主要受裂缝走向与波的极化方向之间的夹角影响,受裂缝倾角影响较小,且快慢横波的能量也跟裂缝走向与波极化方向间的夹角有关。具有倾斜对称轴的横向各向同性(TTI)介质倾角的变化可能会导致记录中波到达时的变化,影响快慢横波的时差。利用横波分裂的能量分布和方位各向异性特征,可以帮助检测裂缝的方位角和倾角。横波在多层TTI介质中传播时会发生多次分裂的现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:A high-order rotated staggered grid scheme (RSG) has been implemented to simulate the shear-wave splitting in tilted transversely isotropic (TTI) media. The high-order RSG can simulate wave propagation in media that contain high-contrast discontinuities like cracks more precisely than the standard staggered grid scheme (SSG) by avoiding the unstableness of the staggered grid scheme (SSG). The authors conducted a study of zero-offset S-wave splitting with the high-order RSG. The S-wave splitting study was mainly focused on fractured media which, on the scale of seismic wavelength, could be regarded as transversely isotropic (TI) media. The results of numerical modeling show that the high-order RSG scheme can be used to simulate waves' propagation in general anisotropic media. The perfect matched layer (PML) absorbing boundary condition combined with the high order RSG scheme can well attenuate reflections from the artificial boundary. The S-wave splitting is mainly affected by the angle between polarization direction of incoming wave and strike of the TTI media, and the energy of fast and slow shear waves is also associated with this angle. The dipping angle of TTI media may affect time lag between the fast and slow waves, which may result in variation of arrival time of waves from the same interface. Thus, the analysis of energy distribution of the fast and slow waves and the variation of arrival time may help detect the strike and dipping angle of the fracture. Besides, when propagating in the media that contain more than one layer of TTI media, the S-wave splitting will occur more than once.
收稿日期: 2011-04-28      出版日期: 2012-12-10
:  P631.4  
基金资助:

国家自然基金项目(40839901)

作者简介: 李敏(1986-),男,在读硕士研究生,主要研究方向为各向异性波动方程正演,公开发表学术论文数篇。
引用本文:   
李敏, 刘洋. 高阶旋转交错网格有限差分方法模拟TTI介质中横波分裂[J]. 物探与化探, 2012, 36(6): 934-940.
LI Min, LIU Yang. MODELING OF THE S-WAVE SPLITTING IN TTI MEDIA USING HIGH-ORDER ROTATED STAGGERED GRID SCHEME. Geophysical and Geochemical Exploration, 2012, 36(6): 934-940.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2012.6.09      或      https://www.wutanyuhuatan.com/CN/Y2012/V36/I6/934
[1] Virieux J.SH-wave propagation in heterogeneous media: velocity-stress finite-difference method[J].Geophysics,1984,49(11):1933-1957.

[2] Virieux J.P-SV Wave propagation in heterogeneous media: Velocity-stress finite-difference method[J].Geophysics,1986,51(4):889-901.

[3] Levander A R.Four-order finite-difference P-SV seismograms[J].Geophysics, 1988, 53(11):1425-1436.

[4] 侯安宁, 何樵登.各向异性介质中弹性波动高阶差分法及其稳定性的研究[J].地球物理学报, 1995, 38(2):243-251.

[5] Gold N, Shapiro S A, Burr E, et al.Modelling of high contrasts in elastic media using a modified finite difference scheme[J].SEG Expanded Abstracts, 1997, 16:1850-1853.

[6] Saenger E H,Gold N,Shapiro S A.Modeling the propagation of elastic waves using a modified finite-difference grid[J].Wave Motion,2000,31:77-92.

[7] Saenger E H, Bohlen T.Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid[J].Geophysics,2004,69:583-591.

[8] Crampin S.A review of wave motion in anisotropic and cracked elastic media[J].Wave Motion,1981,3(4):343-391.

[9] Martinez J R, Ortega A A, McMechan G A.3-D seismic modeling for cracked media: Shear-wave splitting at zero-offset[J].Geophysics,2000,65(1):211-221.

[10] Bansal R, Sen M K.Finite-difference modelling of S-wave splitting in anisotropic media[J].Geophysical Prospecting,2008,56:293-312.

[11] 张晶, 何兵寿, 张会星.含直立裂隙介质的弹性波动方程正演模拟[J].中国煤炭地质,2008,20(1):50-54.

[12] 甘文权, 董良国,马在田.含裂隙介质中横波分裂现象的数值模拟[J].同济大学学报,2000,28(5):547-551.

[13] 刘洋, 李承楚, 牟永光.具有倾斜对称轴的横向各向同性介质中的弹性波[J].石油地球物理勘探, 1998,33(2):161-169.

[14] 裴正林,王尚旭.任意倾斜各向异性介质中弹性波波场交错网格高阶有限差分法模拟[J].地震学报,2005,27(4).

[15] 刘洋, 董敏煜.各向异性介质中的方位AVO[J].石油地球物理勘探,1999,34(3):260-268.

[16] Thomsen L.Weak elastic anisotropy[J].Geophysics,1986,51(10):1954-966.

[17] Berenger J P.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114:185-200.

[18] 陈浩, 王秀明, 赵海波. 旋转交错网格有限差分及其完全匹配层吸收边界条件[J].科学通报,2006,51(17):1985-1994.

[19] Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J].Geophysics,2001,66(1):294-307.

[20] 董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报, 2000,43(6):856-864.

[21] Liu Y, Sen M K.An implicit staggered-grid finite-difference method for seismic modelling[J].Geophysical Journal International,2009,179:459-474.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com