Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1440-1448    DOI: 10.11720/wtyht.2025.0132
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
崇左地区土壤—水稻籽实重金属元素迁移特征及拟合模型研究
陈上仁1(), 钟晓宇1, 李杰1, 杨敏云2, 黄娟1, 陈彪1, 何耀烨1
1.广西壮族自治区地质调查院, 广西 南宁 530031
2.宜州区农业农村局, 广西 河池 546300
Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models
CHEN Shang-Ren1(), ZHONG Xiao-Yu1, LI Jie1, YANG Min-Yun2, HUANG Juan1, CHEN Biao1, HE Yao-Ye1
1. Guangxi Institute of Geological Survey, Nanning 530031, China
2. Yizhou District Bureau of Agriculture and Rural Affairs, Hechi 546300, China
全文: PDF(2679 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

崇左地区地处广西壮族自治区西南部,涵盖江州区、大新县、龙州县,大部分区域属喀斯特地貌。本研究该区域集中连片耕地区采集242组水稻籽实及对应根系土样品,采用电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-OES)、原子荧光光谱法(AFS)等技术测定土壤中As、Cd、Cr等26项元素含量,以及水稻籽实中As、Cd、Hg、Pb含量。通过分析土壤及水稻籽实重金属元素特征,研究土壤—水稻籽实重金属迁移因素,并构建拟合模型,得出以下结论:①土壤中氧化物含量普遍低于全国平均水平,而重金属元素含量相对较高,尤其是Cd和Hg,其中土壤As和Cd的污染风险等级较高;②非岩溶区水稻籽实中As、Cd、Hg、Pb含量普遍大于岩溶区;③水稻籽实As、Cd、Hg、Pb含量总体上符合食品安全标准;④水稻籽实As、Pb与根系土金属元素、非金属元素、氧化物均呈明显的相关关系,且以负相关为主,Cd、Hg则与根系土中的氧化物表现出明显相关性特征;⑤水稻籽实中As的不同类型拟合模型决定系数普遍高于0.5,模型解释能力优于Cd、Hg和Pb,按岩溶区与非岩溶区区分后,拟合模型的决定系数进一步提高;⑥在影响水稻籽实As、Cd、Hg、Pb含量因素中,成土母质的作用更为显著,其影响力大于水稻品种。本研究初步阐明崇左喀斯特区土壤—水稻系统重金属迁移的关键驱动因素,为我国西南类似地貌区的农产品安全生产、污染耕地分类管理与政策制定提供了理论与实践基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈上仁
钟晓宇
李杰
杨敏云
黄娟
陈彪
何耀烨
关键词 崇左地区土壤-水稻重金属元素迁移特征拟合模型    
Abstract

The Chongzuo area, located in southwestern Guangxi, encompasses Jiangzhou District, Daxin County, and Longzhou County, with the majority featuring karst topography. This study focused on 242 samples of rice grains and their corresponding rhizosphere soils from contiguous farmland in the region. These samples were analyzed to measure the contents of 26 elements in the soils, including arsenic (As), cadmium (Cd), and chromium (Cr), as well as the contents of As, Cd, mercury (Hg), and lead (Pb) in rice grains, using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), and atomic fluorescence spectrometry (AFS). By analyzing the characteristics of heavy metals in soils and rice grains, the influencing factors and fitting models of heavy metals from soils to rice grains were investigated. The results indicate that the content of oxides in soil was generally lower than the national average, while the content of heavy metals was relatively high, especially Cd and Hg. As and Cd in soils exhibited relatively high pollution risks. The contents of As, Cd, Hg, and Pb in rice grains from non-karst areas were generally higher than those from karst areas. The contents of As, Cd, Hg, and Pb in rice grains generally complied with food safety standards. As and Pb in rice grains showed significant correlations (dominated by negative correlations) with metal elements, non-metal elements, and oxides in rhizosphere soils, while Cd and Hg exhibited significant correlations with oxides in rhizosphere soils. Various fitting models of As in rice grains generally presented a coefficient of determination (R2) above 0.5, indicating better model performance than those for Cd, Hg, and Pb. After distinguishing between karst and non-karst areas, the R2 values of the fitting models were further improved. Among the factors influencing the contents of As, Cd, Hg, and Pb in rice grains, parent material played a more significant role than rice variety. This study preliminarily clarifies the key driving factors of heavy metal transfer in the soil-rice system in the karst area of Chongzuo, providing a theoretical and practical basis for the safe production of agricultural products, classification-based management of contaminated farmland, and policy formulation in similar karst areas of Southwest China.

Key wordsChongzuo    soil-rice    heavy metal element    transfer characteristics    fitting model
收稿日期: 2025-04-09      修回日期: 2025-07-16      出版日期: 2025-12-20
ZTFLH:  P632  
  X142  
基金资助:生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20060115);生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20070107);生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20080110)
引用本文:   
陈上仁, 钟晓宇, 李杰, 杨敏云, 黄娟, 陈彪, 何耀烨. 崇左地区土壤—水稻籽实重金属元素迁移特征及拟合模型研究[J]. 物探与化探, 2025, 49(6): 1440-1448.
CHEN Shang-Ren, ZHONG Xiao-Yu, LI Jie, YANG Min-Yun, HUANG Juan, CHEN Biao, HE Yao-Ye. Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models. Geophysical and Geochemical Exploration, 2025, 49(6): 1440-1448.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0132      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1440
Fig.1  研究区位置示意(a)及采样点位分布(b)
参数 As Cd Cr Cu Hg Ni Pb Zn Mn N P S Mo
最大值 76.00 4.522 506.0 85.10 0.774 109.00 155.0 384.0 2742.0 5531 2768 1166.0 4.60
最小值 1.93 0.086 25.4 8.51 0.065 5.92 10.1 22.7 63.4 1016 332 178.0 0.21
平均值 17.70 0.780 108.0 31.00 0.270 39.95 43.4 130.0 331.5 2700 901 478.5 0.99
全国平均值 10.3 0.205 66 25 0.076 27 30 71 580 1172 707 353 0.86
元素 B Ge Se I Al2O3 CaO Fe2O3 K2O MgO Na2O SiO2 Corg pH
最大值 154.0 2.48 1.32 4.72 21.88 24.29 18.4 2.87 1.65 0.28 82.9 5.3 8.27
最小值 16.6 0.73 0.24 0.46 4.60 0.15 1.86 0.16 0.14 0.03 17.07 0.52 4.85
平均值 60.0 1.47 0.61 1.63 13.725 0.82 5.74 1.00 0.58 0.07 64.26 2.49 7.17
全国平均值 51 1.4 0.26 2.4 13.14 2.85 4.49 2.36 1.48 1.28 64.96
Table 1  崇左地区土壤元素含量统计(N=242)
参数 As Cd Hg Pb
最小值 0.034 0.005 0.0009 0.036
最大值 0.260 0.360 0.0300 0.090
均值 0.120 0.018 0.0345 0.057
Table 2  水稻籽实重金属元素含量统计(N=242)
Fig.2  水稻籽实重金属富集系数对比
Fig.3  水稻与根系土元素相关热图(N=242)
注:“*”表示在 0.05 级别相关性显著;“**”表示在 0.01 级别相关性显著
因子 早稻籽实 晚稻籽实
As Cd Hg Pb As Cd Hg Pb
决定系数 0.52* 0.19** 0.21* 0.23** 0.57** 0.31* 0.6** 0.47*
常数 -1.49 4.92 0.11 -0.34 -1.43 2.14 2.30 -0.49
As 0.24** - - - 0.40** - - 0.16**
Cd - 0.38** - - -0.17** 0.42* - 0.07**
Cr 0.17** -0.62** - - - - -0.12**
Cu - -0.52** - - - - -
Hg - - -0.26* - 0.45* 0.47** -0.09*
Ni - - 0.35** - 0.13** - 0.31** -
Zn -0.12** - 0.19* 0.13** - -0.54* - -
Mn - -0.32** - - - - -0.26** -
P 0.2** - - - - - 0.4** -0.16**
S 0.17* -0.88* -0.23** - - -0.81** -0.21**
Mo - 0.65** 0.25** - - - -
B -0.09* 0.36* - - 0.61** -
Ge - - - -0.38** 0.35** -1.85** - -0.3**
Se -0.21** - - 0.17** - - - -
I - - -0.2* - - - - -
Al2O3 - - - - - - - 0.33**
CaO -0.05** - - -0.07** - -0.49** - -
Fe2O3 -0.38** - - - -0.58** - - -
K2O 0.1** 0.37** -0.34** 0.14** - - - -
MgO - - - - -0.2** - - -0.1**
Na2O - - - - - - - -0.09*
SiO2 - - - -0.27** - - - -
Corg -0.13* 1** - - - - -0.6** 0.16*
pH -0.42** - - - - - - -0.26*
Table 3  早、晚稻籽实重金属元素拟合模型参数
因子 岩溶区水稻籽实 非岩溶区水稻籽实
As Cd Hg Pb As Cd Hg Pb
决定系数 0.41** 0.46** 0.51* 0.34** 0.57** 0.41* 0.74** 0.52*
常数 4.13 7.54 -0.16 -0.44 -4.41** 2.97 1.65 -2.39
As 0.2** - - - 0.22** - 0.25** -
Cd - 0.67** - 0.06** - 0.9** - -
Cr - - - - - - -0.38** -
Cu -0.41** - 0.28** - 0.31** - 0.68** -0.21**
Hg - - 0.26** -0.14** -0.17** 0.88** - -0.24**
Ni 0.39** - - - - -0.97** - 0.49**
Pb - - - - -0.35** - - 0.25**
Zn -0.23** - - - - -1.06* - -0.33**
Mn - - -0.2** - - - - -0.09**
N -1.08** - - - 0.24** - - 0.22*
P -0.21** - 0.39** -0.16** 0.26** - 0.72** 0.21**
S - -1.16** -0.39** - - - -1.4** -0.17*
B - - - - - 1.61** - -0.18**
Ge 0.38** - - - - -1.8** - -0.19**
Se - 0.79** - 0.16** - - - -
Al2O3 -0.71** 0.93** 0.32* - - - 0.59** -
CaO - -0.43** 0.12** - - - - -0.15**
Fe2O3 - -1.07** - 0.11** - 1.04** -0.93**
K2O - - - -0.08** 0.18** - - -
MgO - - - - -0.23** - - -
Na2O 0.24** -0.55** - - - - - -
SiO2 - -1.07** 0.49** -0.08** 0.9** 1.52* - -
Corg 1.12** - -0.84** 0.05** - - - -
pH - -2.04** - - - -3.86** - 0.68**
Table 4  岩溶区与非岩溶区水稻籽实重金属元素拟合模型参数
Fig.4  基于最佳迁移模型的不同成土母质区水稻重金属预测对数值与实测对数值对比
[1] 钱贞兵, 孙立剑, 徐升, 等. 淮河流域安徽段土壤重金属元素分布特征研究[J]. 岩矿测试, 2018, 37(2):193-200.
[1] Qian Z B, Sun L J, Xu S, et al. Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J]. Rock and Mineral Analysis, 2018, 37(2):193-200.
[2] Luo X S, Yu S, Li X D. Distribution,availability,and sources of trace metals in different particle size fractions of urban soils in Hong Kong:Implications for assessing the risk to human health[J]. Environmental Pollution, 2011, 159(5):1317-1326.
[3] Xiao Q, Zong Y T, Lu S G. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan),Liaoning,Northeast China[J]. Ecotoxicology and Environmental Safety, 2015, 120:377-385.
[4] Katoh Y, Sato T, Yamamoto Y. Determination of multielement concentrations in normal human organs from the Japanese[J]. Biological Trace Element Research, 2002, 90(1):57-70.
[5] Feng D, Wang R X, Sun X A, et al. Heavy metal stress in plants:Ways to alleviate with exogenous substances[J]. Science of the Total Environment, 2023, 897:165397.
[6] 王玉军, 吴同亮, 周东美, 等. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 2017, 36(12):2365-2378.
[6] Wang Y J, Wu T L, Zhou D M, et al. Research progress on evaluation of heavy metal pollution in farmland soil[J]. Journal of Agro-Environment Science, 2017, 36(12):2365-2378.
[7] 张逸, 顾爱华. 镉、铅、汞对血管的损伤及其机制研究进展[J]. 环境与职业医学, 2020, 37(7):727-733.
[7] Zhang Y, Gu A H. Advances on damage and mechanisms of Cd,Pb,and Hg to blood vessels[J]. Journal of Environmental and Occupational Medicine, 2020, 37(7):727-733.
[8] Isiozor N M, Kunutsor S K, Vogelsang D, et al. Serum copper and the risk of cardiovascular disease death in Finnish men[J]. Nutrition,Metabolism and Cardiovascular Diseases, 2023, 33(1):151-157.
[9] 刘情, 陈红燕, 唐豆豆, 等. 苏南典型区土壤—水稻系统中重金属迁移特征及定量模型研究[J]. 环境科技, 2016, 29(4):20-25.
[9] Liu Q, Chen H Y, Tang D D, et al. Migration characteristics and quantitative model of heavy metals in the typical polluted areas of southern Jiangsu Province[J]. Environmental Science and Technology, 2016, 29(4):20-25.
[10] 张厦, 宋静, 高慧, 等. 回归模型法推导油菜田土壤Cd限值的不确定性[J]. 环境科学研究, 2016, 29(8):1170-1179.
[10] Zhang X, Song J, Gao H, et al. Uncertainty of deducing Cd limit value in rape field soil by regression model method[J]. Research of Environmental Sciences, 2016, 29(8):1170-1179.
[11] Wei R H, Chen C, Kou M, et al. Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health[J]. Communications Earth & Environment, 2023, 4:84.
[12] 王佳鑫, 侯青叶, 叶丹君, 等. 珠江三角洲不同成土母质发育水稻土镉活动性差异及其影响因素[J]. 现代地质, 2023, 37(1):197-207.
[12] Wang J X, Hou Q Y, Ye D J, et al. Differences of cadmium mobility in paddy soils from different parent materials in the Pearl River Delta and its influencing factors[J]. Geoscience, 2023, 37(1):197-207.
[13] 蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6):1028-1033.
[13] Cai Q L, Lin D S, Wang G, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6):1028-1033.
[14] 邓齐玉, 赵银军, 林清, 等. 广西重金属镉的区域性分布特征与土壤污染状况评价[J]. 环境工程, 2019, 37(1):164-171,92.
[14] Deng Q Y, Zhao Y J, Lin Q, et al. Regional distribuiton characterstics of cadmium and evaluation of soil pollution situation in Guangxi[J]. Environmental Engineering, 2019, 37(1):164-171,92.
[15] 任杰, 曾杨, 张博伦, 等. 高地球化学背景地区重金属污染分布特征及源解析研究[J]. 环境科学研究, 2024, 37(12):2745-2756.
[15] Ren J, Zeng Y, Zhang B L, et al. Distribution characteristics and enrichment mechanisms of heavy metal pollution in high geochemical background areas[J]. Research of Environmental Sciences, 2024, 37(12):2745-2756.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[16] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[17] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
[17] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.
[18] 张倩, 刘湘伟, 税勇, 等. 黄河上游重金属元素分布特征及生态风险评价[J]. 北京大学学报:自然科学版, 2021, 57(2):333-340.
[18] Zhang Q, Liu X W, Shui Y, et al. Distribution of heavy metals in the upstream of Yellow River and ecological risk assessment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2):333-340.
[19] 冯志刚, 刘秀明, 王世杰, 孙承兴. 中国湖南省西部吉首地区石灰岩风化剖面的矿物学和地球化学特征[J]. 矿物学报, 2002, 30(4):7-14.
[19] Feng Z G, Liu X M, Wang S J, et al. Mineralogical and geochemical characteristics of the limestone weathering profile in Jishou,Western Hunan Province,China[J]. Geology-Geochemistry, 2002, 30(4):7-14.
[20] Ghrefat H A, Yusuf N, Jamarh A, et al. Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River,Jordan[J]. Environmental Earth Sciences, 2012, 66(1):199-208.
[21] Wang Q, Zeng X N, Song Q L, et al. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis[J]. Scientific Reports, 2020, 10:9525.
[22] Xia W W, Ghouri F, Zhong M H, et al. Rice and heavy metals:A review of cadmium impact and potential remediation techniques[J]. Science of the Total Environment, 2024, 957:177403.
[23] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
[23] Ma H H, Peng M, Liu F, et al. Bioavailability,migration and enrichment characteristics of heavy metals in farmland soil-crop system in typical carbonate rock areas of Guangxi[J]. Environmental Science, 2020, 41(1):449-459.
[24] 曹宁, 孙彬彬, 曾道明, 等. 珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究[J]. 岩矿测试, 2020, 39(5):739-752.
[24] Cao N, Sun B B, Zeng D M, et al. Study on the relationship between the contents of heavy metals in rice and root soils in typical townships in the western Pearl River Delta[J]. Rock and Mineral Analysis, 2020, 39(5):739-752.
[25] Zhao K L, Liu X M, Xu J M, et al. Heavy metal contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields[J]. Journal of Hazardous Materials, 2010, 181(1-3):778-787.
[26] Ge Y N, Jia P H, Tian S K, et al. Cadmium distribution in rice:Understanding the role of plant nodes and growth stages[J]. Environmental Pollution, 2024, 362:124919.
[27] 余飞, 张风雷, 蒋玉莲, 等. 地质高背景区土壤—水稻系统重金属含量特征与综合质量评价[J]. 环境科学, 2025, 46(1):453-460.
[27] Yu F, Zhang F L, Jiang Y L, et al. Characteristics and comprehensive quality assessment of heavy metals in soil-crop system of high geological background area[J]. Environmental Science, 2025, 46(1):453-460.
[28] 李冰, 王昌全, 代天飞, 等. 水稻子实对不同形态重金属的累积差异及其影响因素分析[J]. 植物营养与肥料学报, 2007, 13(4):602-610.
[28] Li B, Wang C Q, Dai T F, et al. Accumulation of heavy metals in rice seeds as influenced by metal speciation and soil properties[J]. Plant Nutrition and Fertilizer Science, 2007, 13(4):602-610.
[29] Lavado R S, Rodríguez M, Alvarez R, et al. Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops[J]. Agriculture,Ecosystems & Environment, 2007, 118(1-4):312-318.
[30] Karami M, Afyuni M, Khoshgoftarmanesh A H, et al. Grain zinc,iron,and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables[J]. Journal of Agricultural and Food Chemistry, 2009, 57(22):10876-10882.
[31] Römkens P F A M, Guo H Y, Chu C L, et al. Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8-9):2435-2444.
[32] 黄勇, 欧阳渊, 刘洪, 等. 地质建造对土壤性质的制约及其生态环境效应——以西昌地区红壤为例[J]. 西北地质, 2023, 56(4):196-212.
[32] Huang Y, Ouyang Y, Liu H, et al. Restriction of geological formation on soil properties and its ecological environmental effects:Example from red soil in the Xichang area[J]. Northwestern Geology, 2023, 56(4):196-212.
[33] 李杰, 朱立新, 康志强. 南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1):43-52.
[33] Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning,South China[J]. Carsologica Sinica, 2018, 37(1):43-52.
[34] 周墨, 梅丽辉, 刘冰权, 等. 赣西地区土壤—水稻系统中重金属Cd元素地球化学特征与健康风险评价[J]. 中国地质, 2025, 52(1):278-288.
[34] Zhou M, Mei L H, Liu B Q, et al. Geochemical characteristics and health risk assessment of heavy metal Cd in soil-rice system in Western Jiangxi Province[J]. Geology in China, 2025, 52(1):278-288.
[35] 马宏宏, 彭敏, 郭飞, 等. 广西典型岩溶区农田土壤—作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3):1514-1522.
[35] Ma H H, Peng M, Guo F, et al. Influencing factors of Cd migration and enrichment in farmland soil-crop system in typical karst areas of Guangxi[J]. Environmental Science, 2021, 42(3):1514-1522.
[36] 赵科理, 傅伟军, 戴巍, 等. 浙江省典型水稻产区土壤—水稻系统重金属迁移特征及定量模型[J]. 中国生态农业学报, 2016, 24(2):226-234.
[36] Zhao K L, Fu W J, Dai W, et al. Characteristics and quantitative model of heavy metal transfer in soil-rice systems in typical rice production areas of Zhejiang Province[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2):226-234.
[1] 鲁江, 朱丽芬, 骆检兰, 刘显丽. 湘江流域土壤重金属元素地球化学背景值与基准值研究[J]. 物探与化探, 2025, 49(3): 687-696.
[2] 叶娇珑, 钟红梅, 徐争强, 马婵华. 大气干湿沉降重金属元素通量及对农田土壤的影响——以四川崇州为例[J]. 物探与化探, 2025, 49(3): 708-717.
[3] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[4] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[5] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[6] 魏永强, 江民忠, 孙栋华, 张仁红, 伍显红. 中川地区的铀迁移特征及铀矿找矿有利地段分析[J]. 物探与化探, 2018, 42(2): 259-269.
[7] 崔元俊, 李肖鹏, 董建, 胡雪平. 山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化[J]. 物探与化探, 2013, 37(6): 1100-1106.
[8] 刘文辉. 甘肃省张掖—永昌地区土壤重金属元素地球化学特征[J]. 物探与化探, 2013, 37(5): 883-888.
[9] 王存龙, 赵西强, 蒋文惠, 喻超, 王红晋, 刘华峰. 山东省乐陵—河口地区重金属污染现状与分布迁移规律[J]. 物探与化探, 2012, 36(3): 435-440.
[10] 郦逸根, 董岩翔, 郑洁, 解怀生, 宋明义. 地质因素影响下的硒在土壤—水稻系统中的迁移转化[J]. 物探与化探, 2007, 31(1): 77-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com