E-mail Alert Rss
 

物探与化探, 2025, 49(6): 1440-1448 doi: 10.11720/wtyht.2025.0132

生态地质调查

崇左地区土壤—水稻籽实重金属元素迁移特征及拟合模型研究

陈上仁,1, 钟晓宇1, 李杰1, 杨敏云2, 黄娟1, 陈彪1, 何耀烨1

1.广西壮族自治区地质调查院, 广西 南宁 530031

2.宜州区农业农村局, 广西 河池 546300

Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models

CHEN Shang-Ren,1, ZHONG Xiao-Yu1, LI Jie1, YANG Min-Yun2, HUANG Juan1, CHEN Biao1, HE Yao-Ye1

1. Guangxi Institute of Geological Survey, Nanning 530031, China

2. Yizhou District Bureau of Agriculture and Rural Affairs, Hechi 546300, China

第一作者: 陈上仁(1972-),男,硕士,高级工程师,主要从事地质矿产勘查及地球化学等方面的研究工作。Email:1098545236@qq.com

收稿日期: 2025-04-9   修回日期: 2025-07-16  

基金资助: 生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20060115)
生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20070107)
生态环境部项目“全国土壤现状调查及污染防治国家专项”(GZTR20080110)

Received: 2025-04-9   Revised: 2025-07-16  

摘要

崇左地区地处广西壮族自治区西南部,涵盖江州区、大新县、龙州县,大部分区域属喀斯特地貌。本研究该区域集中连片耕地区采集242组水稻籽实及对应根系土样品,采用电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-OES)、原子荧光光谱法(AFS)等技术测定土壤中As、Cd、Cr等26项元素含量,以及水稻籽实中As、Cd、Hg、Pb含量。通过分析土壤及水稻籽实重金属元素特征,研究土壤—水稻籽实重金属迁移因素,并构建拟合模型,得出以下结论:①土壤中氧化物含量普遍低于全国平均水平,而重金属元素含量相对较高,尤其是Cd和Hg,其中土壤As和Cd的污染风险等级较高;②非岩溶区水稻籽实中As、Cd、Hg、Pb含量普遍大于岩溶区;③水稻籽实As、Cd、Hg、Pb含量总体上符合食品安全标准;④水稻籽实As、Pb与根系土金属元素、非金属元素、氧化物均呈明显的相关关系,且以负相关为主,Cd、Hg则与根系土中的氧化物表现出明显相关性特征;⑤水稻籽实中As的不同类型拟合模型决定系数普遍高于0.5,模型解释能力优于Cd、Hg和Pb,按岩溶区与非岩溶区区分后,拟合模型的决定系数进一步提高;⑥在影响水稻籽实As、Cd、Hg、Pb含量因素中,成土母质的作用更为显著,其影响力大于水稻品种。本研究初步阐明崇左喀斯特区土壤—水稻系统重金属迁移的关键驱动因素,为我国西南类似地貌区的农产品安全生产、污染耕地分类管理与政策制定提供了理论与实践基础。

关键词: 崇左地区; 土壤-水稻; 重金属元素; 迁移特征; 拟合模型

Abstract

The Chongzuo area, located in southwestern Guangxi, encompasses Jiangzhou District, Daxin County, and Longzhou County, with the majority featuring karst topography. This study focused on 242 samples of rice grains and their corresponding rhizosphere soils from contiguous farmland in the region. These samples were analyzed to measure the contents of 26 elements in the soils, including arsenic (As), cadmium (Cd), and chromium (Cr), as well as the contents of As, Cd, mercury (Hg), and lead (Pb) in rice grains, using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), and atomic fluorescence spectrometry (AFS). By analyzing the characteristics of heavy metals in soils and rice grains, the influencing factors and fitting models of heavy metals from soils to rice grains were investigated. The results indicate that the content of oxides in soil was generally lower than the national average, while the content of heavy metals was relatively high, especially Cd and Hg. As and Cd in soils exhibited relatively high pollution risks. The contents of As, Cd, Hg, and Pb in rice grains from non-karst areas were generally higher than those from karst areas. The contents of As, Cd, Hg, and Pb in rice grains generally complied with food safety standards. As and Pb in rice grains showed significant correlations (dominated by negative correlations) with metal elements, non-metal elements, and oxides in rhizosphere soils, while Cd and Hg exhibited significant correlations with oxides in rhizosphere soils. Various fitting models of As in rice grains generally presented a coefficient of determination (R2) above 0.5, indicating better model performance than those for Cd, Hg, and Pb. After distinguishing between karst and non-karst areas, the R2 values of the fitting models were further improved. Among the factors influencing the contents of As, Cd, Hg, and Pb in rice grains, parent material played a more significant role than rice variety. This study preliminarily clarifies the key driving factors of heavy metal transfer in the soil-rice system in the karst area of Chongzuo, providing a theoretical and practical basis for the safe production of agricultural products, classification-based management of contaminated farmland, and policy formulation in similar karst areas of Southwest China.

Keywords: Chongzuo; soil-rice; heavy metal element; transfer characteristics; fitting model

PDF (2679KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈上仁, 钟晓宇, 李杰, 杨敏云, 黄娟, 陈彪, 何耀烨. 崇左地区土壤—水稻籽实重金属元素迁移特征及拟合模型研究[J]. 物探与化探, 2025, 49(6): 1440-1448 doi:10.11720/wtyht.2025.0132

CHEN Shang-Ren, ZHONG Xiao-Yu, LI Jie, YANG Min-Yun, HUANG Juan, CHEN Biao, HE Yao-Ye. Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1440-1448 doi:10.11720/wtyht.2025.0132

0 引言

重金属元素是影响生态环境的重要因子,其迁移特征一直是国内外学者研究的重点[1-3]。其中,As、Cd、Hg、Pb等重金属元素因其毒性强、易积累且难以降解的特性,对生态系统和人类健康构成了严重威胁[4]。具体而言,重金属元素可通过特定的转运蛋白进入植物根系,干扰植物的正常发育[5-6];同时还可以通过饮水和饮食进入人体,对人体健康产生诸多负面影响,如增大心血管疾病的死亡风险[6-7],并对神经、呼吸等系统造成损害[8]

定量描述水稻籽实中As、Cd、Hg、Pb的影响因子及其贡献,是研究其迁移特征的关键[9]。线性回归模型被广泛应用于研究农作物元素浓度与土壤理化性质之间的关系中[10],然而其结论往往受到多因子相互作用的干扰影响[11],其中水稻品种和成土母质是两个重要的影响因子[12-13]

前期调查表明,广西地区表层土壤中重金属元素平均含量普遍高于全国背景值,尤其是在广西西南部的崇左市等区域,Cd和Hg的含量超标现象尤为突出[14-15]。因此,选择崇左市作为研究区,研究土壤—作物系统重金属迁移累积规律及其对农产品食用安全性的影响具有重要实际意义。本研究旨在通过开展土壤和水稻籽实中元素含量的特征统计及相关性分析,引入水稻品种和成土母质分类变量,开展线性模型拟合分析。通过研究,量化描述水稻籽实中重金属元素的迁移影响因子,为重金属污染土壤风险评估和修复提供科学依据,同时为相关环境政策的制定提供理论支持。

1 材料与方法

1.1 研究区概况及样品采集

研究区位于广西壮族自治区西南部(东经106°34'59~107°37'11,北纬22°10'04~22°58'02),毗邻越南,涵盖崇左市江州区、大新县、龙州县3县区,为主要粮食作物产区。地层包括泥盆系、石炭系、侏罗系、三叠系、第四系及侵入岩。成土母质以碳酸盐岩为主,非碳酸盐岩区面积较小。地貌多溶蚀小平原和圆洼地、槽谷地,丘陵起伏,山多地少,为典型的喀斯特岩溶地貌区。全年光照充足,夏长冬短,雨量充沛,干湿季节分明,具有明显的南亚热带季风气候特点。

根据研究区农业生产发展现状,于2020年前后在水稻成熟期间连片耕地区,选择代表性地块均匀布设样点。以0.1~0.2 hm2为采样单元,以对角线法选择5个采样点,每个采样点采集3~4株稻穗混合成样,并采集相应根系土,根系土采集深度0~20 cm。共采集242件水稻及其根系土,每件水稻样品重约500 g,根系土样品重约1 kg,采用四分法缩分处理。样品采集点位见图1

图1

图1   研究区位置示意(a)及采样点位分布(b)

Fig.1   The location of the study area (a) and the distribution of sampling points (b)


1.2 样品制备及分析

1.2.1 样品制备

土壤样采集后装布袋运回实验室,在室内自然风干,过20目尼龙筛后取部分样直接用于pH值分析,剩余样品在小于60 ℃恒温干燥箱内充分烘干。样品烘干混匀后,除去非土壤杂质,采用玛瑙球磨机将样品研磨至0.074 mm用于元素化学分析。

水稻籽实采集后用尼龙网袋包装,带回实验室自然风干后去除杂质。先用自来水及纯水冲洗干净后,低温烘干,经精米机脱壳后制成精米。用去离子水清洗,于55 ℃烘箱中烘干,取不超过200 g样品粉碎至20目,装入塑料瓶中待分析。

1.2.2 样品测试

样品测试工作由广西壮族自治区地质矿产测试研究中心承担。土壤测定采用常规分析方法[16]。测定Cd、Ni、Mo、Se的土样经HF+HNO3+HClO4分解,测定B、Ge、I的土样经氧化钠熔融处理后,采用电感耦合等离子体质谱法(ICP-MS)测定。经HF+HNO3+HClO4分解后的土样,采用电感耦合等离子体发射光谱法(ICP-OES)测定Cu、Mn、CaO、MgO、Na2O。土样经压饼法成型后,采用X射线荧光光谱法测定Cr、P、Pb、Zn、Al2O3、Fe2O3、SiO2、K2O、S、Ti。样品经王水消解,分别用硫脲—抗坏血酸、氯化亚锡作为As、Hg的还原剂,采用原子荧光光谱法(AFS)测定As、Hg。样品经硫酸、硫酸钾和硫酸铜消解,用凯氏定氮仪经蒸馏和滴定测得N。采用重铬酸钾氧化法(Walkley-Black)测定Corg。根据玻璃电极和参比电极测量溶液的电势差测定pH值。水稻籽实样品消解后,采用原子荧光光谱法(AFS)测定As、Hg,电感耦合等离子体质谱法(ICP-MS)测定Cd,X射线荧光光谱法测定Pb。土壤和农作物样品分析测试准确度和精密度合格率均为100%,数据质量可靠。

1.3 统计分析及检验

使用Excel 2019进行前期数据处理,SPSS 23.0软件统计水稻及根系土元素参数,开展正态分布检验、相关性检验;使用JMP Pro 18及astata/MP 17.0研究建立拟合模型,通过Origin 2025及MapGIS 6.7绘制图件。

2 分析及讨论

2.1 特征分析

2.1.1 土壤元素含量特征

与中国表层土壤(0~20 cm)平均值[17]相比,研究区土壤中B、Mo、F、Ge、Al2O3、SiO2含量均值相差不大;大部分氧化物表现出明显的亏损,K2O、MgO、CaO、Na2O含量仅为全国平均值的5%~42%;重金属元素呈富集特征,以Cd、Hg尤为明显,均值分别达全国平均值的3.8倍及3.6倍,Zn、As、Cr、Ni、Pb分别为全国平均值的1.83倍、1.72倍、1.64倍、1.48倍和1.45倍。土壤元素含量统计结果见表1

表1   崇左地区土壤元素含量统计(N=242)

Table 1  Statistics of element contents in soil samples (N=242)

参数AsCdCrCuHgNiPbZnMnNPSMo
最大值76.004.522506.085.100.774109.00155.0384.02742.0553127681166.04.60
最小值1.930.08625.48.510.0655.9210.122.763.41016332178.00.21
平均值17.700.780108.031.000.27039.9543.4130.0331.52700901478.50.99
全国平均值10.30.20566250.07627307158011727073530.86
元素BGeSeIAl2O3CaOFe2O3K2OMgONa2OSiO2CorgpH
最大值154.02.481.324.7221.8824.2918.42.871.650.2882.95.38.27
最小值16.60.730.240.464.600.151.860.160.140.0317.070.524.85
平均值60.01.470.611.6313.7250.825.741.000.580.0764.262.497.17
全国平均值511.40.262.413.142.854.492.361.481.2864.96

注:pH值无量纲,Al2O3、CaO、Fe2O3、K2O、MgO、Na2O、SiO2、Corg含量单位为%,其余为10-6

新窗口打开| 下载CSV


参照《土壤环境质量农用地土壤污染风险管控标准》(CB 15618—2018),土壤As、Cd污染风险等级较高,约有62.4%的土壤样品Cd含量高于土壤风险筛选值,且有16.9%的样品Cd含量高于土壤风险管控值;As含量高于土壤风险筛选值的样品占比为33.5%;Cr、Cu、Hg、Ni、Pb、Zn污染风险等级低,绝大部分样品低于土壤风险筛选值。

广西南部地区土壤重金属富集问题成因复杂[18],一方面,广西岩溶区土壤具有典型的地质高背景特征,碳酸盐岩风化成土过程中,Cd、Hg等重金属元素在土壤中富集[19];另一方面,土壤中Cd可能大量赋存于可交换盐和碳酸盐组分中,造成Cd元素的富集[20]

2.1.2 水稻重金属含量特征

水稻籽实中As含量范围为(0.034~0.260)×10-6,Cd含量范围为(0.005~0.360)×10-6,Hg含量范围为(0.000 9~0.030 0)×10-6,Pb含量范围为(0.036~0.090)×10-6,其均值分别为0.120×10-6、0.018×10-6、0.034 5×10-6、0.057×10-6(表2)。参照《食品安全国家标准 食品中污染物限量》(GB 2762—2022),水稻籽实As、Cd、Hg超标比例分别为0.8%、3.3%、2.5%,无Pb含量超标水稻。

表2   水稻籽实重金属元素含量统计(N=242)

Table 2  Statistics of element contents in Rice samples (N=242) 10-6

参数AsCdHgPb
最小值0.0340.0050.00090.036
最大值0.2600.3600.03000.090
均值0.1200.0180.03450.057

新窗口打开| 下载CSV


针对不同水稻品种、水稻种植区成土母质分别开展非参数检验。曼—惠特尼检验(Mann-Whitney U test)结果表明,早、晚稻籽实中Cd、Pb含量总体差异较小,As、Hg含量总体分布则存在显著差异,早、晚稻As含量均值分别为0.12×10-6、0.082×10-6,Hg含量均值分别为0.003 2×10-6、0.041 5×10-6。克鲁斯卡尔—沃利斯检验(Kruskal-Wallis test)结果表明,不同成土母质背景的水稻重金属含量均存在显著差异。非碳酸盐岩区水稻重金属含量普遍较高,As、Cd、Hg、Pb均值分别为0.135×10-6、0.054 ×10-6、0.006×10-6、0.064×10-6;碳酸盐岩区水稻重金属含量均值分别为0.104×10-6、0.043×10-6、0.004 ×10-6、0.051×10-6

植物富集系数(bioconcentration factor, BCF)是衡量植物从土壤中吸收和积累重金属能力的重要指标,反映了土壤—植物体系中重金属迁移的难易程度,计算公式如下:

BCF=Cp/Cs×100\%,

式中:Cp为水稻籽实重金属含量(10-6);Cs为根系土中该重金属含量(10-6)。

研究区水稻籽实As、Cd、Hg、Pb富集系数均值分别为0.85%、8.4%、2%、0.14%。分类比较,早、晚稻重金属富集能力差异较小,不同成土母质区水稻重金属富集能力则存在明显差异。碳酸盐岩区富集能力整体低于非碳酸盐岩区,碳酸盐岩区As、Cd、Hg、Pb富集系数均值分别为0.7%、5.68%、1.68%、0.12%,非碳酸盐岩区均值分别为1.1%、12.85%、2.42%、0.18%。结合前人研究可以认为,元素含量、赋存形态、土壤物理性质等因素是造成岩溶区与非岩溶区水稻重金属元素富集能力显著差异的重要原因[21-23]。水稻籽实重金属富集能力对比见图2

图2

图2   水稻籽实重金属富集系数对比

Fig.2   Histogram of heavy metal accumulation capacity in rice grains


2.2 重金属迁移影响因素

水稻籽实与根系土元素间的相关性见图3。在P<0.01的置信条件下,水稻籽实中As含量与根系土中Mo、Ge、SiO2存在显著正相关,与Cr、Pb、Mn、N、P、S、Mo、Se、I、Al2O3、CaO、Fe2O3、Corg、pH值存在显著负相关;Cd含量与根系土中K2O、SiO2存在显著正相关,与I、CaO、Fe2O3、pH值存在显著负相关;Hg含量与根系土中Cu、SiO2存在显著正相关,与N、S、Corg存在显著负相关;Pb含量与根系土中SiO2存在显著正相关,与Cr、Hg、Ni、Mn、N、P、S、B、I、Al2O3、CaO、MgO、Corg、pH值存在显著负相关。

图3

图3   水稻与根系土元素相关热图(N=242)

注:“*”表示在 0.05 级别相关性显著;“**”表示在 0.01 级别相关性显著

Fig.3   Correlation coefficients between rice grain and root soil element contents (N=242)

Note:“*”and “**” indicate that the regression model is significant at 0.05 and 0.01 levels, respectively.


从相关性程度来看,水稻籽实Cd、Hg与土壤中Cr、Hg、Pb等金属元素相关性较弱,与N、P等非金属元素相关性较强;As、Pb与土壤中金属元素、非金属元素、化合物均存在较强的相关关系;这与曹宁等[24]的研究结果相符。Zhao等[25]发现土壤重金属总量、pH值、土壤质地、有机质以及N、P、K等元素含量是决定土壤—水稻系统中重金属迁移的关键因素。Ge等[26]、余飞等 [27]、李冰等[28]研究发现水稻籽实与土壤Cd含量间存在显著正相关,与土壤pH成负相关,这与本文研究结论一致,即土壤酸化一定程度上会加剧Cd的生物有效性。

2.3 预测模型分析

本研究选择最小二乘法对水稻重金属元素进行线性拟合,依据元素空间分布特点,多元线性拟合模型类型分为三角函数模型、球面模型、高斯模型、指数模型、K-Bessel、J-Bessel、孔洞效应等[29-31]

利用JMP Pro 18进行拟合模型研究,根据因子可靠性对自变量因子进行逐一筛选,选择相关分析中显著性水平P值小于0.05的元素参与效应汇总,所有自变量因子方差膨胀系数VIF值均小于1,不存在多重共线性影响。分析结果见表3表4,表中带“*”的变量对水稻重金属迁移的影响显著,带“**”的变量为关键驱动因素,其影响高度可靠,优先用于模型优化或污染调控。

表3   早、晚稻籽实重金属元素拟合模型参数

Table 3  Parameters of fitting models for heavy metal elements in early and late rice grains

因子早稻籽实晚稻籽实
AsCdHgPbAsCdHgPb
决定系数0.52*0.19**0.21*0.23**0.57**0.31*0.6**0.47*
常数-1.494.920.11-0.34-1.432.142.30-0.49
As0.24**---0.40**--0.16**
Cd-0.38**---0.17**0.42*-0.07**
Cr0.17**-0.62**-----0.12**
Cu--0.52**-----
Hg---0.26*-0.45*0.47**-0.09*
Ni--0.35**-0.13**-0.31**-
Zn-0.12**-0.19*0.13**--0.54*--
Mn--0.32**-----0.26**-
P0.2**-----0.4**-0.16**
S0.17*-0.88*-0.23**---0.81**-0.21**
Mo-0.65**0.25**----
B-0.09*0.36*--0.61**-
Ge----0.38**0.35**-1.85**--0.3**
Se-0.21**--0.17**----
I---0.2*-----
Al2O3-------0.33**
CaO-0.05**---0.07**--0.49**--
Fe2O3-0.38**----0.58**---
K2O0.1**0.37**-0.34**0.14**----
MgO-----0.2**---0.1**
Na2O--------0.09*
SiO2----0.27**----
Corg-0.13*1**-----0.6**0.16*
pH-0.42**-------0.26*

注:“*”表示在0.05级别相关性显著;“**”表示在0.01级别相关性显著。

新窗口打开| 下载CSV


表4   岩溶区与非岩溶区水稻籽实重金属元素拟合模型参数

Table 4  Parameters of fitting models for heavy metal elements in rice grains from karst and non-karst areas

因子岩溶区水稻籽实非岩溶区水稻籽实
AsCdHgPbAsCdHgPb
决定系数0.41**0.46**0.51*0.34**0.57**0.41*0.74**0.52*
常数4.137.54-0.16-0.44-4.41**2.971.65-2.39
As0.2**---0.22**-0.25**-
Cd-0.67**-0.06**-0.9**--
Cr-------0.38**-
Cu-0.41**-0.28**-0.31**-0.68**-0.21**
Hg--0.26**-0.14**-0.17**0.88**--0.24**
Ni0.39**-----0.97**-0.49**
Pb-----0.35**--0.25**
Zn-0.23**-----1.06*--0.33**
Mn---0.2**-----0.09**
N-1.08**---0.24**--0.22*
P-0.21**-0.39**-0.16**0.26**-0.72**0.21**
S--1.16**-0.39**----1.4**-0.17*
B-----1.61**--0.18**
Ge0.38**-----1.8**--0.19**
Se-0.79**-0.16**----
Al2O3-0.71**0.93**0.32*---0.59**-
CaO--0.43**0.12**-----0.15**
Fe2O3--1.07**-0.11**-1.04**-0.93**
K2O----0.08**0.18**---
MgO-----0.23**---
Na2O0.24**-0.55**------
SiO2--1.07**0.49**-0.08**0.9**1.52*--
Corg1.12**--0.84**0.05**----
pH--2.04**----3.86**-0.68**

注:“*”表示在0.05级别相关性显著;“**”表示在0.01级别相关性显著。

新窗口打开| 下载CSV


对水稻籽实中As、Cd、Hg、Pb含量的拟合分析发现,As模型拟合精度相对较高。具体而言,水稻籽实中As、Cd、Hg、Pb的总体拟合模型决定系数分别为0.5、0.42、0.25和0.39。进一步根据水稻品种及成土母质进行分类分析,岩溶区和非岩溶区水稻中As的拟合模型决定系数分别为0.41和0.57,早稻和晚稻中As的拟合模型决定系数分别为0.54和0.57;而对应的Pb的拟合模型决定系数仅分别为0.34、0.52、0.23和0.47。这表明水稻籽实中As含量的变化规律性更为明显,其模型拟合效果也相对更好。相比之下,其他重金属元素在迁移和积累过程中受到更多其他外在因素的影响,这些因素使得它们的迁移和积累过程的解释更为复杂,从而导致模型拟合难度增加[32]

成土母质是土壤形成的基础物质,其矿物组成和化学特性直接影响土壤中重金属的初始分布和迁移能力[33-34]。此外,水稻类型也会影响其重金属的赋存状态和迁移能力[35]。在两者中,成土母质对水稻重金属含量的影响更为显著[36],不同成土母质的水稻拟合模型决定系数也相对更高。例如,重金属Hg的拟合模型决定系数在岩溶区和非岩溶区水稻中分别为0.51和0.74,而早稻和晚稻重金属Hg的拟合模型决定系数仅分别为0.21和0.60。As、Cd、Pb也表征出类似的特征。

岩溶区及非岩溶区水稻籽实中As、Cd、Hg、Pb含量预测对数值与实测对数值对比如图4所示。所有模型的均方根误差(RMSE)均小于36%,表明模型能够较好地捕捉数据的变化趋势和规律。4种元素中,模型预测精度最高的是Pb,其岩溶区和非岩溶区的RMSE值分别为0.073和0.051;其次是As和Cd,二者的RMSE值均在0.16以下;而Hg的RMSE值相对较高,约为0.35。不同水稻品种模型预测结果与之同样相似,RMSE值与相应的籽实元素含量对比,均处于合适的区间范围内。因此,本次模型研究对各元素的预测具有较高的可靠性。

图4

图4   基于最佳迁移模型的不同成土母质区水稻重金属预测对数值与实测对数值对比

Fig.4   Comparison of prediction logarithm value and measured logarithm values of heavy metals in rice based on the best transfer model in different lithogenic zones


模型的高解释力可用于预测水稻As含量,结合岩溶、非岩溶分区可进一步提高精度,并推广至类似喀斯特地区;Cd、Hg当前模型解释力较低,今后研究中可引入更多变量(如土壤微生物)提升预测能力。

3 结论

与全国平均水平相比,崇左地区土壤中氧化物含量普遍较低,而重金属元素含量相对较高,尤其是Cd和Hg。区域内土壤As、Cd污染风险等级较高。早稻和晚稻籽实中Cd、Pb含量差异较小,而As、Hg含量差异较大。此外,岩溶区与非岩溶区之间水稻籽实的As、Cd、Hg、Pb含量也存在显著差异:非碳酸盐岩区水稻籽实中As、Cd、Hg、Pb的含量均值是碳酸盐岩区的1.25~1.48倍。尽管如此,崇左地区水稻籽实中As、Cd、Hg、Pb含量总体上仍符合食品安全标准。

崇左地区水稻籽实中As、Pb含量与根系土壤中金属、非金属元素及氧化物均表现出明显的相关性,以负相关为主;而Cd、Hg则主要与根系土壤中氧化物表现出显著的相关性特征。

多元线性拟合结果表明,水稻籽实中As的不同类型拟合模型决定系数普遍高于0.5,表明模型具有较好的解释能力,总体优于Cd、Hg和Pb。当将水稻籽实按岩溶区与非岩溶区加以区分后,拟合模型的决定系数进一步提高,其中非岩溶区水稻Hg的拟合模型决定系数可达0.74,表现最为明显。相比之下,水稻品种对水稻籽实中重金属含量的影响力相对较弱。例如,早稻籽实中Cd、Hg、Pb以及晚稻籽实中Cd、Pb的模型拟合性普遍较差。这说明在影响水稻籽实中As、Cd、Hg、Pb含量的因素中,成土母质的作用更为显著,其影响力大于水稻品种。

本研究初步揭示了喀斯特区土壤—水稻系统重金属迁移的主控因素,为环境地球化学与农产品安全研究提供新视角,也为崇左及类似地区差异化修复和模型化监管提供科学依据。

参考文献

钱贞兵, 孙立剑, 徐升, .

淮河流域安徽段土壤重金属元素分布特征研究

[J]. 岩矿测试, 2018, 37(2):193-200.

[本文引用: 1]

Qian Z B, Sun L J, Xu S, et al.

Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin

[J]. Rock and Mineral Analysis, 2018, 37(2):193-200.

[本文引用: 1]

Luo X S, Yu S, Li X D.

Distribution,availability,and sources of trace metals in different particle size fractions of urban soils in Hong Kong:Implications for assessing the risk to human health

[J]. Environmental Pollution, 2011, 159(5):1317-1326.

Xiao Q, Zong Y T, Lu S G.

Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan),Liaoning,Northeast China

[J]. Ecotoxicology and Environmental Safety, 2015, 120:377-385.

[本文引用: 1]

Katoh Y, Sato T, Yamamoto Y.

Determination of multielement concentrations in normal human organs from the Japanese

[J]. Biological Trace Element Research, 2002, 90(1):57-70.

[本文引用: 1]

Feng D, Wang R X, Sun X A, et al.

Heavy metal stress in plants:Ways to alleviate with exogenous substances

[J]. Science of the Total Environment, 2023, 897:165397.

[本文引用: 1]

王玉军, 吴同亮, 周东美, .

农田土壤重金属污染评价研究进展

[J]. 农业环境科学学报, 2017, 36(12):2365-2378.

[本文引用: 2]

Wang Y J, Wu T L, Zhou D M, et al.

Research progress on evaluation of heavy metal pollution in farmland soil

[J]. Journal of Agro-Environment Science, 2017, 36(12):2365-2378.

[本文引用: 2]

张逸, 顾爱华.

镉、铅、汞对血管的损伤及其机制研究进展

[J]. 环境与职业医学, 2020, 37(7):727-733.

[本文引用: 1]

Zhang Y, Gu A H.

Advances on damage and mechanisms of Cd,Pb,and Hg to blood vessels

[J]. Journal of Environmental and Occupational Medicine, 2020, 37(7):727-733.

[本文引用: 1]

Isiozor N M, Kunutsor S K, Vogelsang D, et al.

Serum copper and the risk of cardiovascular disease death in Finnish men

[J]. Nutrition,Metabolism and Cardiovascular Diseases, 2023, 33(1):151-157.

[本文引用: 1]

刘情, 陈红燕, 唐豆豆, .

苏南典型区土壤—水稻系统中重金属迁移特征及定量模型研究

[J]. 环境科技, 2016, 29(4):20-25.

[本文引用: 1]

Liu Q, Chen H Y, Tang D D, et al.

Migration characteristics and quantitative model of heavy metals in the typical polluted areas of southern Jiangsu Province

[J]. Environmental Science and Technology, 2016, 29(4):20-25.

[本文引用: 1]

张厦, 宋静, 高慧, .

回归模型法推导油菜田土壤Cd限值的不确定性

[J]. 环境科学研究, 2016, 29(8):1170-1179.

[本文引用: 1]

Zhang X, Song J, Gao H, et al.

Uncertainty of deducing Cd limit value in rape field soil by regression model method

[J]. Research of Environmental Sciences, 2016, 29(8):1170-1179.

[本文引用: 1]

Wei R H, Chen C, Kou M, et al.

Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health

[J]. Communications Earth & Environment, 2023, 4:84.

[本文引用: 1]

王佳鑫, 侯青叶, 叶丹君, .

珠江三角洲不同成土母质发育水稻土镉活动性差异及其影响因素

[J]. 现代地质, 2023, 37(1):197-207.

[本文引用: 1]

Wang J X, Hou Q Y, Ye D J, et al.

Differences of cadmium mobility in paddy soils from different parent materials in the Pearl River Delta and its influencing factors

[J]. Geoscience, 2023, 37(1):197-207.

[本文引用: 1]

蔡秋玲, 林大松, 王果, .

不同类型水稻镉富集与转运能力的差异分析

[J]. 农业环境科学学报, 2016, 35(6):1028-1033.

[本文引用: 1]

Cai Q L, Lin D S, Wang G, et al.

Differences in cadmium accumulation and transfer capacity among different types of rice cultivars

[J]. Journal of Agro-Environment Science, 2016, 35(6):1028-1033.

[本文引用: 1]

邓齐玉, 赵银军, 林清, .

广西重金属镉的区域性分布特征与土壤污染状况评价

[J]. 环境工程, 2019, 37(1):164-171,92.

[本文引用: 1]

Deng Q Y, Zhao Y J, Lin Q, et al.

Regional distribuiton characterstics of cadmium and evaluation of soil pollution situation in Guangxi

[J]. Environmental Engineering, 2019, 37(1):164-171,92.

[本文引用: 1]

任杰, 曾杨, 张博伦, .

高地球化学背景地区重金属污染分布特征及源解析研究

[J]. 环境科学研究, 2024, 37(12):2745-2756.

[本文引用: 1]

Ren J, Zeng Y, Zhang B L, et al.

Distribution characteristics and enrichment mechanisms of heavy metal pollution in high geochemical background areas

[J]. Research of Environmental Sciences, 2024, 37(12):2745-2756.

[本文引用: 1]

鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

[本文引用: 1]

Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.

[本文引用: 1]

侯青叶, 杨忠芳, 余涛, . 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.

[本文引用: 1]

Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.

[本文引用: 1]

张倩, 刘湘伟, 税勇, .

黄河上游重金属元素分布特征及生态风险评价

[J]. 北京大学学报:自然科学版, 2021, 57(2):333-340.

[本文引用: 1]

Zhang Q, Liu X W, Shui Y, et al.

Distribution of heavy metals in the upstream of Yellow River and ecological risk assessment

[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(2):333-340.

[本文引用: 1]

冯志刚, 刘秀明, 王世杰, 孙承兴.

中国湖南省西部吉首地区石灰岩风化剖面的矿物学和地球化学特征

[J]. 矿物学报, 2002, 30(4):7-14.

[本文引用: 1]

Feng Z G, Liu X M, Wang S J, et al.

Mineralogical and geochemical characteristics of the limestone weathering profile in Jishou,Western Hunan Province,China

[J]. Geology-Geochemistry, 2002, 30(4):7-14.

[本文引用: 1]

Ghrefat H A, Yusuf N, Jamarh A, et al.

Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River,Jordan

[J]. Environmental Earth Sciences, 2012, 66(1):199-208.

[本文引用: 1]

Wang Q, Zeng X N, Song Q L, et al.

Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis

[J]. Scientific Reports, 2020, 10:9525.

[本文引用: 1]

Xia W W, Ghouri F, Zhong M H, et al.

Rice and heavy metals:A review of cadmium impact and potential remediation techniques

[J]. Science of the Total Environment, 2024, 957:177403.

马宏宏, 彭敏, 刘飞, .

广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征

[J]. 环境科学, 2020, 41(1):449-459.

[本文引用: 1]

Ma H H, Peng M, Liu F, et al.

Bioavailability,migration and enrichment characteristics of heavy metals in farmland soil-crop system in typical carbonate rock areas of Guangxi

[J]. Environmental Science, 2020, 41(1):449-459.

[本文引用: 1]

曹宁, 孙彬彬, 曾道明, .

珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究

[J]. 岩矿测试, 2020, 39(5):739-752.

[本文引用: 1]

Cao N, Sun B B, Zeng D M, et al.

Study on the relationship between the contents of heavy metals in rice and root soils in typical townships in the western Pearl River Delta

[J]. Rock and Mineral Analysis, 2020, 39(5):739-752.

[本文引用: 1]

Zhao K L, Liu X M, Xu J M, et al.

Heavy metal contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields

[J]. Journal of Hazardous Materials, 2010, 181(1-3):778-787.

[本文引用: 1]

Ge Y N, Jia P H, Tian S K, et al.

Cadmium distribution in rice:Understanding the role of plant nodes and growth stages

[J]. Environmental Pollution, 2024, 362:124919.

[本文引用: 1]

余飞, 张风雷, 蒋玉莲, .

地质高背景区土壤—水稻系统重金属含量特征与综合质量评价

[J]. 环境科学, 2025, 46(1):453-460.

[本文引用: 1]

Yu F, Zhang F L, Jiang Y L, et al.

Characteristics and comprehensive quality assessment of heavy metals in soil-crop system of high geological background area

[J]. Environmental Science, 2025, 46(1):453-460.

[本文引用: 1]

李冰, 王昌全, 代天飞, .

水稻子实对不同形态重金属的累积差异及其影响因素分析

[J]. 植物营养与肥料学报, 2007, 13(4):602-610.

[本文引用: 1]

Li B, Wang C Q, Dai T F, et al.

Accumulation of heavy metals in rice seeds as influenced by metal speciation and soil properties

[J]. Plant Nutrition and Fertilizer Science, 2007, 13(4):602-610.

[本文引用: 1]

Lavado R S, Rodríguez M, Alvarez R, et al.

Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops

[J]. Agriculture,Ecosystems & Environment, 2007, 118(1-4):312-318.

[本文引用: 1]

Karami M, Afyuni M, Khoshgoftarmanesh A H, et al.

Grain zinc,iron,and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables

[J]. Journal of Agricultural and Food Chemistry, 2009, 57(22):10876-10882.

Römkens P F A M, Guo H Y, Chu C L, et al.

Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines

[J]. Environmental Pollution, 2009, 157(8-9):2435-2444.

[本文引用: 1]

黄勇, 欧阳渊, 刘洪, .

地质建造对土壤性质的制约及其生态环境效应——以西昌地区红壤为例

[J]. 西北地质, 2023, 56(4):196-212.

[本文引用: 1]

Huang Y, Ouyang Y, Liu H, et al.

Restriction of geological formation on soil properties and its ecological environmental effects:Example from red soil in the Xichang area

[J]. Northwestern Geology, 2023, 56(4):196-212.

[本文引用: 1]

李杰, 朱立新, 康志强.

南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素

[J]. 中国岩溶, 2018, 37(1):43-52.

[本文引用: 1]

Li J, Zhu L X, Kang Z Q.

Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning,South China

[J]. Carsologica Sinica, 2018, 37(1):43-52.

[本文引用: 1]

周墨, 梅丽辉, 刘冰权, .

赣西地区土壤—水稻系统中重金属Cd元素地球化学特征与健康风险评价

[J]. 中国地质, 2025, 52(1):278-288.

[本文引用: 1]

Zhou M, Mei L H, Liu B Q, et al.

Geochemical characteristics and health risk assessment of heavy metal Cd in soil-rice system in Western Jiangxi Province

[J]. Geology in China, 2025, 52(1):278-288.

[本文引用: 1]

马宏宏, 彭敏, 郭飞, .

广西典型岩溶区农田土壤—作物系统Cd迁移富集影响因素

[J]. 环境科学, 2021, 42(3):1514-1522.

[本文引用: 1]

Ma H H, Peng M, Guo F, et al.

Influencing factors of Cd migration and enrichment in farmland soil-crop system in typical karst areas of Guangxi

[J]. Environmental Science, 2021, 42(3):1514-1522.

[本文引用: 1]

赵科理, 傅伟军, 戴巍, .

浙江省典型水稻产区土壤—水稻系统重金属迁移特征及定量模型

[J]. 中国生态农业学报, 2016, 24(2):226-234.

[本文引用: 1]

Zhao K L, Fu W J, Dai W, et al.

Characteristics and quantitative model of heavy metal transfer in soil-rice systems in typical rice production areas of Zhejiang Province

[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2):226-234.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com