Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 259-269    DOI: 10.11720/wtyht.2025.1391
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于深度兴趣演化网络的成矿预测——以西澳表生钙结岩型铀矿为例
张长江1,2(), 何剑锋1,2,3(), 聂逢君1,2, 夏菲1,2, 李卫东1,2, 汪雪元1,2,3, 张鑫1,2, 钟国韵1,2,3
1.东华理工大学 江西省核地学数据科学与系统工程技术研究中心,江西 南昌 330013
2.东华理工大学 信息工程学院,江西 南昌 330013
3.东华理工大学 江西省放射性地学大数据技术工程实验室,江西 南昌 330013
Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia
ZHANG Chang-Jiang1,2(), HE Jian-Feng1,2,3(), NIE Feng-Jun1,2, XIA Fei1,2, LI Wei-Dong1,2, WANG Xue-Yuan1,2,3, ZHANG Xin1,2, ZHONG Guo-Yun1,2,3
1. Jiangxi Engineering Technology Research Center of Nuclear Geoscience Data Science and System, East China University of Technology, Nanchang 330013, China
2. School of Information Engineering, East China University of Technology, Nanchang 330013, China
3. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China
全文: PDF(9933 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,推荐系统算法受到数字地球科学研究领域的关注,有望在成矿预测领域得到广泛应用。海量地学数据中包含着多种语义信息,而在传统的成矿预测研究中并未对其进行充分挖掘。深度兴趣演化网络(deep interest evolution network,DIEN)作为推荐系统算法,对语义信息挖掘充分,可以达到对用户偏好的预测。故本文采用DIEN作为预测模型,根据西澳大利亚政府提供的数据库,选取由解释基岩提取的语义信息作为控矿要素。通过训练模型对研究区进行成矿预测,结果显示92.95%的铀矿点分布在预测图内中高概率区域,并且部分未知区域显示为较高预测概率,在去除部分区域已知铀矿点后重新训练模型,该区域仍显示中高预测概率。表明DIEN对成矿预测研究中语义信息进行了有效挖掘,且模型对于研究区存在较好的预测能力,为成矿预测研究开辟了全新的思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张长江
何剑锋
聂逢君
夏菲
李卫东
汪雪元
张鑫
钟国韵
关键词 深度兴趣演化网络成矿预测语义信息西澳大利亚表生钙结岩型铀矿    
Abstract

Recommendation system algorithms, having recently garnered significant attention in the field of digital Earth science, are expected to be widely applied in metallogenic prediction. Traditional metallogenic prediction studies fail to fully mine the various types of semantic information in massive geoscience data. The deep interest evolution network (DIEN), as a recommendation system algorithm, can fully mine semantic information to predict user preferences. Therefore, this study employed the DIEN model as the prediction model and the semantic information extracted from bedrock interpretation as the ore-controlling elements according to the database provided by the Western Australian government. The model was trained to perform metallogenic prediction for the study area. The prediction results indicate that 92.95% of uranium ore occurrences fell within the medium-high probability zone in the prediction map, with some unknown zones also showing high prediction probabilities. After removing known uranium ore occurrences in some zones, the retrained model still yielded medium-high prediction probabilities in these zones. The results suggest that the DIEN can effectively mine semantic information in metallogenic prediction studies, and the DIEN model exhibits strong predictive capacity for the study area, providing a novel approach for metallogenic prediction studies.

Key wordsdeep interest evolution network    metallogenic prediction    semantic information    Western Australia    supergenetic calcrete-hosted uranium deposit
收稿日期: 2024-09-23      修回日期: 2024-11-28      出版日期: 2025-04-20
ZTFLH:  P612  
  TP391  
基金资助:国家自然科学基金项目(U2067202);全国重点实验室基金项目(2024QZ-TD-10);江西省主要学科学术和技术带头人培养计划项目(20225BCJ22004);江西省重点研发计划项目(20203BBG73069)
通讯作者: 何剑锋(1977-),男,博士,教授,博导,主要研究方向:智能核信息处理、嵌入式系统应用开发。Email:hjf_10@yeah.net
作者简介: 张长江(1998-),男,硕士研究生,研究方向为智能找矿。Email:2675587356@qq.com
引用本文:   
张长江, 何剑锋, 聂逢君, 夏菲, 李卫东, 汪雪元, 张鑫, 钟国韵. 基于深度兴趣演化网络的成矿预测——以西澳表生钙结岩型铀矿为例[J]. 物探与化探, 2025, 49(2): 259-269.
ZHANG Chang-Jiang, HE Jian-Feng, NIE Feng-Jun, XIA Fei, LI Wei-Dong, WANG Xue-Yuan, ZHANG Xin, ZHONG Guo-Yun. Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia. Geophysical and Geochemical Exploration, 2025, 49(2): 259-269.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1391      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/259
Fig.1  伊尔冈克拉通区域地质(据GSWA[15]修改)
Fig.2  DIEN模型架构(据Zhou等[22]修改)
Fig.3  GRU结构
Fig.4  铀矿点赋值
Fig.5  栅格数据集
Fig.6  基岩类型
Fig.7  岩石类型
Fig.8  起始地层
Fig.9  终止地层
Fig.10  起始地质年龄
Fig.11  终止地质年龄
Fig.12  损失曲线
Fig.13  ROC曲线
Fig.14  AUC曲线
Fig.15  研究区预测
Fig.16  研究区预测(去除部分区域的选取铀矿点)
Fig.17  研究区预测(去除30%的选取铀矿点)
[1] The OECD Nuclear Energy Agency. Uranium 2022:Resources,production and demand[M]. Paris: OECD Publishing: 2023.
[2] 张士红, 林子瑜. 大数据时代(铀)成矿预测技术方法变革[J]. 铀矿地质, 2021, 37(5):913-919.
[2] Zhang S H, Lin Z Y. Technological and methodological changes of (uranium) mineral resources prediction in big data era[J]. Uranium Geology, 2021, 37(5):913-919.
[3] Needham S. Yeelirrie uranium deposit in Western Australia[R]. Australia: Department of Parliamentary Services, 2009.
[4] 左仁广. 基于深度学习的深层次矿化信息挖掘与集成[J]. 矿物岩石地球化学通报, 2019, 38(1):53-60,203.
[4] Zuo R G. Deep learning-based mining and integration of deep-level mineralization information[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2019, 38(1):53-60,203.
[5] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647.
[5] Huang L W, Jiang B T, Lyu S Y, et al. Survey on deep learning-based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647.
[6] 路英川, 李鹏, 王浩, 等. 大数据时代矿床学研究发展状况综述[J]. 世界核地质科学, 2021, 38(3):295-310.
[6] Lu Y C, Li P, Wang H, et al. A review on the development of mineral deposit science in the era of big data[J]. World Nuclear Geoscience, 2021, 38(3):295-310.
[7] 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年:大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3):556-573.
[7] Zhou Y Z, Zuo R G, Liu G, et al. The great-leap-forward development of mathematical geoscience during 2010-2019:Big data and artificial intelligence algorithm are changing mathematical geoscience[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(3):556-573.
[8] 郭永志. 西澳大利亚太古代伊尔岗地块的地质情况简介[J]. 国外前寒武纪地质, 1978, 1(4):45-63.
[8] Guo Y Z. Brief introduction to the geological situation of Archean Yilgam block in Western Australia[J]. North China Geology, 1978, 1(4):45-63.
[9] 地矿部赴西澳考察组. 赴西澳考察综合报告[J]. 国外地质勘探技术, 1989(5):46-50,9.
[9] Ministry of Geology and Mineral Resources Delegation to Western Australia for Inspection and Study. A comprehensive report on the investigation in western Australia[J]. Foreign Geoexploration Technology, 1989(5):46-50,9.
[10] 李艾银, 齐立平, 孔红杰, 等. 西澳大利亚中西铁矿区地质特征及找矿标志[J]. 地质通报, 2014, 33(S1):228-237.
[10] Li A Y, Qi L P, Kong H J, et al. Geological features and exploration indicators of the Midwest iron ore district in western Australia[J]. Geological Bulletin of China, 2014, 33(S1):228-237.
[11] 陈秀法, 张振芳. 澳大利亚铀矿资源现状与勘查开发建议[J]. 地质论评, 2015, 61(S1):902-903.
[11] Chen X F, Zhang Z F. Present situation of uranium resources in Australia and suggestions for exploration and development[J]. Geological Review, 2015, 61(S1):902-903.
[12] Anand R R, Paine M. Regolith geology of the Yilgarn Craton,Western Australia:implications for exploration[J]. Australian Journal of Earth Sciences, 2002, 49(1):3-16.
[13] Anand R R, Butt C R M. A guide for mineral exploration through the regolith in the Yilgarn Craton,Western Australia[J]. Australian Journal of Earth Sciences, 2010, 57(8):1015-1114.
[14] Butt C R M, Horwitz R C, and Mann A W. Uranium occurrences in calcrete and associated sediments in Western Australia[R]. CSIRO,Division of Mineralogy,Minerals Research Laboratories,Report FP16.
[15] Geological Survey of Western AustraliaGSWA. Commonwealth Scientific and Industrial Reasearch Organization,1997. GSWA 2009 extended abstracts:Promoting the prospectivity of Western Australia[R]. Western Australia: Geological Survey of Western Australia, 2009.
[16] Rakel A, Mcconchie D, 张兴余. 澳大利亚内陆古水系中钙结岩和膏结岩岩相的分类和成因及其与钒钾铀矿矿化的关系[J]. 国外铀矿地质, 1985, 2(1):6-15.
[16] Arakel A, Mcconchie D, Zhang X Y. Classification and genesis of calcareous and gypsum lithofacies in the ancient inland water system of Australia and their relationship with the mineralization of vanadium-potassium-uranium deposits[J]. World Nuclear Geoscience, 1985, 2(1):6-15.
[17] Briot P, 王智儒. 西澳伊利里含铀钙结岩水文地质环境[J]. 国外铀矿地质, 1984, 1(3):44-52.
[17] Briot P, Wang Z R. Hydrogeological environment of uranium-bearing calcium nodules in Yili,western Australia[J]. World Nuclear Geoscience, 1984, 1(3):44-52.
[18] Joly A, Porwal A, McCuaig T C, et al. Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions:Insights from Western Australia[J]. Ore Geology Reviews, 2015, 71:673-702.
[19] Porwal A, Das R D, Chaudhary B, et al. Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area,Western Australia[J]. Ore Geology Reviews, 2015, 71:839-852.
[20] 张云龙. 西澳伊尔加恩地区多元地学信息GIS集成与钙结岩型铀矿成矿预测[D]. 抚州: 东华理工大学, 2014.
[20] Zhang Y L. GIS integration of multi-geo-information and mineralization prediction of calcareous uranium deposits in ilgaen,western Australia[D]. Fuzhou: East China Institute of Technology, 2014.
[21] Chudasama B, Porwal A, González-Álvarez I, et al. Calcrete-hosted surficial uranium systems in Western Australia:Prospectivity modeling and quantitative estimates of resources.Part 1-Origin of calcrete uranium deposits in surficial environments:A review[J]. Ore Geology Reviews, 2018, 102:906-936.
[22] Zhou G R, Mou N, Fan Y, et al. Deep interest evolution network for click-through rate prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):5941-5948.
[1] 卢文东, 孙斌, 李光杰, 魏伟, 夏小兴, 潘丙磊, 沙晴, 吕小红, 李元春, 乔娜. 因子分析在地球化学分区中的应用及指示意义——以山东省莒县—五莲地区1:5万水系沉积物测量数据为例[J]. 物探与化探, 2025, 49(2): 411-421.
[2] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[3] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[4] 魏从玲, 陈建立, 郭鹏. 基于MRAS证据权重模型的河南老湾地区金矿成矿预测[J]. 物探与化探, 2022, 46(3): 653-660.
[5] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[6] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[7] 张恩, 段明, 卢辉雄, 冯博, 曹秋义, 杨彦超. 林西—乌兰浩特地区铀成矿多源信息分析与成矿预测[J]. 物探与化探, 2019, 43(5): 948-957.
[8] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
[9] 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5): 882-888.
[10] 孔旭, 密文天, 莫雄, 谢敏涛, 蒋国林, 符长亮. 基于MRAS证据权重法的湖南怀化地区金矿成矿预测[J]. 物探与化探, 2016, 40(3): 467-474.
[11] 张恩, 李名松, 汪冰, 牛海威, 卢辉雄, 李存金. 基于GIS的证据权重法在小兴安岭北段金成矿预测中的应用[J]. 物探与化探, 2015, 39(4): 756-761.
[12] 刘武生, 李必红, 史清平, 贾立城, 赵兴齐. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2): 234-239.
[13] 李晓利, 张宝林, 郭志华, 赵连锋, 肖骑彬, 张丽莉, 海连富, 李刚. 黄土覆盖区金矿深部地质结构大地电磁探测——以河北怀来颜家沟金矿为例[J]. 物探与化探, 2014, 38(6): 1124-1128.
[14] 吴志春, 郭福生, 谢财富, 刘林清, 姜勇彪. 江西省相山铀多金属矿田 重磁坡度异常提取与成矿预测[J]. 物探与化探, 2013, 37(3): 453-460.
[15] 李惠, 禹斌, 李德亮, 张国义, 马久菊, 孙凤舟, 李上, 魏江, 赵佳祥, 王俊, 翟培. 成矿区带构造叠加晕找矿预测新方法[J]. 物探与化探, 2013, 37(2): 189-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com