Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 897-903    DOI: 10.11720/wtyht.2022.1546
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用
邵广周1(), 李远林2, 岳亮1
1.长安大学 地质工程与测绘学院,陕西 西安 710054
2.宝鸡市地震局,陕西 宝鸡 721004
Joint application of active and passive surface wave in 3D imaging of loess covered area
SHAO Guang-Zhou1(), LI Yuan-Lin2, YUE Liang1
1. School of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,China
2. Baoji Seismological Bureau,Baoji 721004,China
全文: PDF(4096 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

黄土盖层对地震波、电磁波等有很强的衰减作用,限制了地震反射波法、电磁波法等多种物探方法在黄土覆盖区的应用。针对黄土盖层厚度大、分层细的特点,采用主动源与被动源面波法联合勘探,使两种面波方法优势互补,达到准确探测黄土覆盖区地质分层的目的。研究区位于渭河盆地凤翔县郊,为典型的黄土覆盖区,黄土覆盖层厚度为80~120 m。通过对研究区主动源与被动源面波实测资料的处理,得到的二维横波速度剖面上的主要地层分层位置与实际钻孔测试结果基本一致,同时得到了研究区的三维地层结构。联合成像结果表明采用被动源与主动源面波联合勘探进行黄土覆盖区地层结构分层是可行且有效的,为黄土覆盖区地质填图提供了技术支持和有益思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵广周
李远林
岳亮
关键词 黄土覆盖区主动源面波被动源面波联合勘探三维成像    
Abstract

Due to the strong attenuation effect of loess cover on seismic and electromagnetic waves, the successful application of seismic reflection wave method and electromagnetic wave method in loess covered area is limited.In view of the characteristics of large thickness and fine stratification of loess cover, the active source and passive source surface wave methods are combined in this paper, so that the advantages of the two surface wave methods are complementary and the geological stratification of loess covered area can be accurately detected.The study area is located in the suburb of Fengxiang County,Weihe Basin.It is a typical loess covered area, and the thickness of loess cover is 80~120 m.By processing the measured data of active and passive surface waves in the study area, the positions of the main strata on the 2D shear wave velocity profile are basically consistent with the actual borehole test results, and the 3D stratum structure in the study area is also obtained.The results of joint imaging show that it is feasible and effective to use passive and active surface wave joint exploration for stratification of loess covered area, which provides technical support and beneficial idea for geological mapping of loess covered area.

Key wordsloess covered area    active source surface wave    passive source surface wave    joint exploration    3D imaging
收稿日期: 2021-10-14      修回日期: 2022-07-10      出版日期: 2022-08-20
ZTFLH:  P  
基金资助:国家重点研发计划项目课题(2021YFA0716902);国家自然科学基金项目(42174176);国家自然科学基金项目(41874123)
作者简介: 邵广周(1977-),男,副教授,研究生导师,主要从事地震勘探与地球物理信号处理方面的研究工作。Email: shao_gz@chd.edu.cn
引用本文:   
邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
SHAO Guang-Zhou, LI Yuan-Lin, YUE Liang. Joint application of active and passive surface wave in 3D imaging of loess covered area. Geophysical and Geochemical Exploration, 2022, 46(4): 897-903.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1546      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/897
Fig.1  不同m值时的频散曲线
Fig.2  研究区面波勘探测线布设
Fig.3  测点1对应的主动源与被动源频谱
Fig.4  测点1处的面波频散曲线
Fig.5  测点1处的一维横波速度剖面
Fig.6  测线7主动源面波法反演横波速度剖面
Fig.7  测线1被动源面波法反演横波速度剖面
Fig.8  主动源与被动源联合反演剖面与测井曲线、岩性柱对比
a—联合反演横波速度剖面;b—XY-6B井位声波测井曲线、岩性柱
层数 岩性 埋深/m 横波速度/(m·s-1) 地层年代
1 马兰黄土及全新统黄土 <25 100~500 晚更新世
2 黄土与古土壤互层 25~110 500~900 中更新世
2-1 古土壤夹层 35~60 1200 中更新世
3 亚黏土与砂土互层 110~180 900~1500 早更新世
4 湖相沉积 180~230 1500~2000 上新世
5 红黏土 >230 >2000 上新世
Table 1  联合反演剖面岩层划分结果
Fig.9  研究区地层三维地质建模结果(a)及地层栅状图(b)
[1] 王振东. 双源面波勘探构想[J]. 中国地质, 1998, 25(4):47-48.
[1] Wang Z D. Concept of dual source surface wave exploration[J]. Geology in China, 1998, 25(4):47-48.
[2] Park C B, Miller R D, Ryden N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3):323-334.
doi: 10.2113/JEEG10.3.323
[3] Park C B, Miller R D. Roadside passive multichannel analysis of surface waves (MASW)[J]. Journal of Environmental and Engineering Geophysics, 2008, 13(1):1-11.
doi: 10.2113/JEEG13.1.1
[4] Zor E, Ozalaybey S, Karaaslan A, et al. Shear wave velocity structure of the Izmit Bay area (Turkey) estimated from active-passive array surface wave and single-station microtremor methods[J]. Geophysical Journal International, 2010, 182(3):1603-1618.
doi: 10.1111/j.1365-246X.2010.04710.x
[5] 李凯. 面波勘探技术在工程勘察中的应用进展[J]. 工程地球物理学报, 2011, 8(1):97-104.
[5] Li K. Progress of surface wave exploration technology in engineering exploration[J]. Chinese Journal of Engineering Geophysics, 2011, 8(1):97-104.
[6] Foti S, Parolai S, Albarello D, et al. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 2011, 32(6):777-825.
doi: 10.1007/s10712-011-9134-2
[7] Foti S, Parolai S, Bergamo P, et al. Surface wave surveys for seismic site characterization of accelerometric stations in ITACA[J]. Bulletin of Earthquake Engineering, 2011, 9(6):1797-1820.
doi: 10.1007/s10518-011-9306-y
[8] 张维, 何正勤, 胡刚, 等. 用面波联合勘探技术探测浅部速度结构[J]. 地球物理学进展, 2013, 28(4):2199-2206.
[8] Zhang W, He Z Q, Hu G, et al. Detection of the shallow velocity structure with surface wave prospection method[J]. Progress in Geophysics, 2013, 28(4):2199-2206.
[9] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6):2906-2922.
[9] Liu Q H, Lu L Y, Wang K M. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics, 2015, 30(6):2906-2922.
[10] 单波, 王延辉, 侯寿贵. 多道瞬态面波与天然源面波勘探方法在填方区的综合应用[J]. 工程勘察, 2017, 45(s2):311-315.
[10] Shan B, Wang Y H, Hou S G. Comprehensive application of surface wave and micro-exploration method in filling area[J]. Geotechnical Investigation and Surveying, 2017, 45(s2):311-315.
[11] Feng C, Xia J H, Shen C, et al. Imposing active sources during high-frequency passive surface-wave measurement[J]. Engineering, 2018, 4(5):225-242.
[12] 丰赟, 沙椿. 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018, 42(2):392-397.
[12] Feng Y, Sha C. Combined use active and passive surface waves in the deep overburden area[J]. Geophysical and Geochemical Exploration, 2018, 42(2):392-397.
[13] 邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6):836-840.
[13] Shao G Z, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. Oil Geophysical Prospecting, 2010, 45(6):836-840.
[14] Ekstrom G, Abers G A, Webb S C. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation[J]. Geophysical Research Letters, 2009, 36(18):64-66.
[15] Tasi V C, Moschetti M P. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J]. Geophysical Journal International, 2010, 182(1): 454-460.
[16] 邵广周, 岳亮, 李远林, 等. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6):1297-1308.
[16] Shao G Z, Yue L, Li Y L, et al. A study of quality control of extracting dispersion curves by two-channel passive Rayleigh waves[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1297-1308.
[1] 窦备, 张必敏, 叶荣, 迟清华. 黄土覆盖区隐伏矿地球化学勘查技术试验研究——以河南中河堤银铅锌多金属矿为例[J]. 物探与化探, 2021, 45(4): 933-941.
[2] 赵文举, 赵荔, 杨战军, 陶德强. 插值切割位场分离方法改进及其在资料处理中的应用[J]. 物探与化探, 2020, 44(4): 886-893.
[3] 蔺强强, 郑琪, 苏永红. 黄土覆盖区地气测量有效性评价——以甘肃省通渭县陈贾村地区为例[J]. 物探与化探, 2020, 44(3): 533-539.
[4] 崔亚彤, 郭良辉. 磁异常和梯度的频率域三维成像方法[J]. 物探与化探, 2019, 43(3): 589-597.
[5] 安好收, 罗传根. 浅层纵横波联合勘探在活动断层探测中的应用[J]. 物探与化探, 2019, 43(3): 543-550.
[6] 杨笑笑, 罗先熔, 文美兰, 欧阳菲, 吕星海, 尹高科, 郑广明. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019, 43(2): 244-256.
[7] 刘四新, 王文天, 鹿琪, 李宏卿, 傅磊. 基于反正切法的定向钻孔雷达三维成像算法[J]. 物探与化探, 2018, 42(2): 358-362.
[8] 丰赟, 沙椿. 面波联合勘探在深厚覆盖层地区应用实例分析[J]. 物探与化探, 2018, 42(2): 392-397.
[9] 孙茂锐, 王双六. 电磁波CT二维与三维成像应用[J]. 物探与化探, 2015, 39(3): 641-645.
[10] 赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010, 34(6): 759-764.
[11] 高玉岩, 汪明启, 夏修展, 王涛. 某些景观区隐伏金属矿地气法试验结果[J]. 物探与化探, 2010, 34(2): 144-149.
[12] 仇恒永, 王治华, 王书增, 夏学礼. 浅层SH反射波法和多道瞬态面波法 进行联合工程勘察的讨论[J]. 物探与化探, 2008, 32(4): 451-454.
[13] 卫敬生. 利用土壤吸附汞寻找断裂破碎带的应用实例[J]. 物探与化探, 2001, 25(1): 78-80.
[14] 徐明才, 姜成. 地面地震和VSP联合勘探在市区活动断裂调查中的应用研究[J]. 物探与化探, 2000, 24(3): 184-189,202.
[15] 刘保金, 赵成斌, 孙振国, 王琦, 崔昭文. 地震折射和反射波联合勘探在桥址区工程勘察中的应用[J]. 物探与化探, 1998, 22(2): 134-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com