Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 729-736    DOI: 10.11720/wtyht.2022.1216
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于组合震源编码的多尺度全波形反演方法
国运东()
中国石化集团中原油田分公司 物探研究院,河南 濮阳 457001
Multi-scale full waveform inversion method using combined source encoding
GUO Yun-Dong()
Geophysical Exploration Research Institute,Zhongyuan Oilfield Company of Sinopec,Puyang 457001,China
全文: PDF(3548 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

全波形反演(full waveform inversion,FWI)是目前精度最高的一种速度反演工具,通过迭代反演得到高精度的地下构造,为叠前成像技术提供更准确的速度场,满足目前勘探开发日益复杂的需求。但FWI需要估计精确的震源子波,而从野外采集的地震数据提取子波是非常困难的,此外,反演过程中,模型参数与观测数据存在强的非线性关系,容易产生周波跳跃现象。针对中低波数反演过程中存在周波跳跃现象与地震子波难提取的问题,本文构建了一种基于组合震源的多尺度波形反演方法。首先对子波和地震数据进行时移组合叠加,再进行互相关梯度求取,只需要一次逆时偏移的计算量,就可以完成梯度的求取,实现多尺度反演的目标。通过模型试算,基于组合震源的FWI方法,可以达到多尺度反演的目的,使得反演结果更稳定;与不依赖子波的方法相结合,反演结果相对准确。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
国运东
关键词 全波形反演组合震源编码多尺度不依赖子波    
Abstract

Full waveform inversion (FWI) is one of the most accurate velocity inversion tools.It can be used to obtain high-precision subsurface structures through iterative inversion and provide a more accurate velocity field for prestack imaging technology,thus satisfying the increasingly complex demand for petroleum exploration and development.However,FWI requires accurately estimated source wavelets,which are very difficult to extract from the seismic data collected in the field.Furthermore,in the inversion process,there is a strong nonlinear relationship between model parameters and observed data,which is liable to induce cycle skipping.To overcome the cycle skipping and the difficulty in extracting seismic wavelets in the inversion process of medium-low wavenumber,this paper developed a multi-scale waveform inversion method using combined source encoding.Specifically,the wavelets and seismic data were combined by applying time-shift stacking,and gradients can be determined through only one calculation of reverse time migration.According to the calculation results using a model,the FWI method using combined source encoding can be used to achieve multi-scale inversion and obtain more stable inversion results.Meanwhile,relatively accurate inversion results can be obtained by combining this method with a source-independent method.

Key wordsfull waveform inversion    combined source encoding    multi-scale inversion    source-independent inversion
收稿日期: 2021-04-12      修回日期: 2022-01-14      出版日期: 2022-06-20
ZTFLH:  P631  
基金资助:中原油田分公司科研项目(JC21-12);中石化集团公司项目(P21003)
作者简介: 国运东(1991-),男,博士后,2020年毕业于中国石油大学(华东),研究方向为全波形反演。Email: gyd_upc@edu.cn
引用本文:   
国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3): 729-736.
GUO Yun-Dong. Multi-scale full waveform inversion method using combined source encoding. Geophysical and Geochemical Exploration, 2022, 46(3): 729-736.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1216      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/729
Fig.1  不同子波时间域波形示意
a—主频15 Hz的雷克子波波形;b—半波长的组合震源波形
Fig.2  不同子波频谱示意
a—主频15 Hz的雷克子波频谱;b—时移半波长的组合震源频谱
Fig.3  不同子波互相关示意
Fig.4  组合震源编码的全波形反演流程
Fig.5  反演用的真实速度模型(a)和初始速度模型(b)
Fig.6  不同观测地震记录以及对应的组合震源炮记录
a—Marmousi模型雷克子单炮地震记录;b—组合震源单炮记录;c—极性编码超级炮记录;d—组合震源超级炮记录
Fig.7  常规FWI反演(a)和使用组合震源的FWI(b)反演结果对比
Fig.8  不同反演方法的数据误差曲线
Fig.9  不同组合时移参数反演
a—组合时移参数τ=0.25λ;b—组合时移参数τ=1.0λ
Fig.10  不依赖子波的组合震源反演结果
[1] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
doi: 10.1190/1.1441754
[2] Tarantola A. Inverse problem theory:Methods for data fitting and model parameter estimation[J]. Physics of the Earth & Planetary Interiors, 1987, 57(3):350-351.
[3] Song Z M, Williamson P R, Pratt R G. Frequency-domain acoustic-wave modeling and inversion of crosshole data:Part II—Inversion method,synthetic experiments and real-data results[J]. Geophysics, 1995, 60(3):796-809.
doi: 10.1190/1.1443818
[4] Pratt R G. Seismic waveform inversion in the frequency domain,Part 1:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.
doi: 10.1190/1.1444597
[5] Mora P. Nonlinear two-dimensional elastic inversion of multi-offset seismic data[J]. Geophysics, 1987, 52(9):1211-1228.
doi: 10.1190/1.1442384
[6] Wang G C, Du Q Z. Elastic full waveform inversion based on envelope objective function[J]. Geophysical Prospecting for Petroleum, 2016, 55(1):133-141.
[7] Plessix R E, Rynja H. VTI full waveform inversion:A parameterization study with a narrow azimuth streamer data example[C]// SEG Technical Program Expanded Abstracts 2010,Society of Exploration Geophysicists, 2010:962-966.
[8] 刘玉柱, 黄鑫泉, 万先武, 等. 各向异性介质弹性波多参数全波形反演[J]. 地球物理学报, 2019, 62(5):1809-1823.
[8] Liu Y Z, Huang X Q, Wan X W, et al. Elastic multi-parameter full-waveform inversion for anisotropic media[J]. Chinese Journal of Geophysics, 2019, 62(5):1809-1823.
[9] Kamath N, Tsvankin I. Elastic full-waveform inversion for VTI media:Methodology and sensitivity analysis[J]. Geophysics, 2016, 81(2):C53-C68.
doi: 10.1190/geo2014-0586.1
[10] Brossier R, Operto S, Virieux J. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[J]. Geophysics, 2009, 74(6):WCC105-WCC118.
doi: 10.1190/1.3215771
[11] 杨积忠, 刘玉柱, 董良国. 变密度声波方程多参数全波形反演策略[J]. 地球物理学报, 2014, 57(2):628-643.
[11] Yang J Z, Liu Y Z, Dong L G. A multi-parameter full waveform inversion strategy for acoustic media with variable density[J]. Chinese Journal of Geophysics, 2014, 57(2):628-643.
[12] Shin C, Cha Y H. Waveform inversion in the Laplace domain[J]. Geophysical Journal International, 2008, 173(3):922-931.
doi: 10.1111/j.1365-246X.2008.03768.x
[13] Shin C, Young H C. Waveform inversion in the Laplace—Fourier domain[J]. Geophys. J. Int., 2009, 177(3):1067-1079.
doi: 10.1111/j.1365-246X.2009.04102.x
[14] 戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1):90-99.
[14] Dai Q W, Chen W, Zhang B. Improved particle swarm optimization and its application to full-waveform inversion of GPR[J]. Geophysical and Geochemical Exploration, 2019, 43(1):90-99.
[15] 胡光辉, 王立歆, 王杰, 等. 基于早至波的特征波波形反演建模方法[J]. 石油物探, 2015, 54(1):71-76.
[15] Hu G H, Wang L X, Wang J, et al. Characteristics waveform inversion based on early arrival wave[J]. Geophysical Prospecting for Petroleum, 2015, 54(1):71-76.
[16] 周斯琛, 李振春, 张敏, 等. 基于截断牛顿法的频率域全波形反演方法[J]. 物探与化探, 2017, 41(1):147-152.
[16] Zhou S C, Li Z C, Zhang M, et al. Full waveform inversion in frequency domain using the truncated Newton method[J]. Geophysical and Geochemical Exploration, 2017, 41(1):147-152.
[17] Yong P, Liao W, Huang J, et al. Misfit function for full waveform inversion based on the Wasserstein metric with dynamic formulation[J]. Journal of Computational Physics, 2019, 399:108911.
doi: 10.1016/j.jcp.2019.108911
[18] Claerbout J F. Fundamentals of geophysical data processing[J]. Geophysical Journal International, 1986, 86(1):217-219.
[19] Jannane M, Beydoun W, Crase E, et al. Wavelengths of earth structures that can be resolved from seismic reflection data[J]. Geophysics, 1989, 54(7):906-910.
doi: 10.1190/1.1442719
[20] Bunks C, Saleck F M, Zaleski S, et al. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5):1457-1473.
doi: 10.1190/1.1443880
[21] Sirgue L, Pratt R G. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophysics, 2004, 69(1):231-248.
doi: 10.1190/1.1649391
[22] Boonyasiriwat C, Valasek P, Routh P, et al. An efficient multiscale method for time-domain waveform tomography[J]. Geophysics, 2009, 74(6):WCC59-WCC68.
doi: 10.1190/1.3151869
[23] Rietveld W E A, Berkhout A J. Depth migration combined with controlled illumination[J]. SEG Technical Program Expanded Abstracts, 1999, 11(1):931-934.
[24] Rietveld W E A, Berkhout A J, Wapenaar C P A. Optimum seismic illumination of hydrocarbon reservoirs[J]. Geophysics, 1992, 57(10):1334-1345.
doi: 10.1190/1.1443200
[25] Rietveld W E A, Berkhout A J. Prestack depth migration by means of controlled illumination[J]. Geophysics, 1994, 59(5):801-809.
doi: 10.1190/1.1443638
[26] Romero L A, Ghiglia D C, Ober C C, et al. Phase encoding of shot records in prestack migration[J]. Geophysics, 2000, 65(2):426-436.
doi: 10.1190/1.1444737
[27] Jing X, Finn C J, Dickens T A, et al. Encoding multiple shot gathers in prestack migration[M]. Society of Exploration Geophysicists, 2000:786-789.
[28] Vigh D, Starr E W. 3D prestack plane-wave,full-waveform inversion[J]. Geophysics, 2008, 73(5):VE135-VE144.
doi: 10.1190/1.2952623
[29] Krebs J R, Anderson J E, Hinkley D, et al. Fast full-wavefield seismic inversion using encoded sources[J]. Geophysics, 2009, 74(6):WCC177-WCC188.
doi: 10.1190/1.3230502
[30] Tang Y. Target-oriented wave-equation least-squares migration/inversion with phase-encoded hessian[J]. Geophysics, 2009, 74(6):WCA95-WCA107.
doi: 10.1190/1.3204768
[31] Schuster G T, Wang X, Huang Y, et al. Theory of multisource crosstalk reduction by phase-encoded statics[J]. Geophysical Journal International, 2011, 184(3):1289-1303.
doi: 10.1111/j.1365-246X.2010.04906.x
[32] Guitton A, Díaz E. Attenuating crosstalk noise with simultaneous source full waveform inversion[J]. Geophysical Prospecting, 2012, 60:759-768.
doi: 10.1111/j.1365-2478.2011.01023.x
[33] Huang Y, Schuster G T. Multisource least-squares migration of marine streamer and land data with frequency-division encoding[J]. Geophysical Prospecting, 2012, 60(4):663-680.
doi: 10.1111/j.1365-2478.2012.01086.x
[34] 黄建平, 孙陨松, 李振春, 等. 一种基于分频编码的最小二乘裂步偏移方法[J]. 石油地球物理勘探, 2014, 49(4):702-707.
[34] Huang J P, Sun Y S, Li Z C, et al. Least-squares split-step migration based on frequency-division encoding[J]. Oil Geophysical Prospecting, 2014, 49(4):702-707.
[35] Dai W, Huang Y, Schuster G T. Least-squares reverse time migration of marine data with frequency-selection encoding[J]. Geophysics, 2013, 78(4):S233-S242.
doi: 10.1190/geo2013-0003.1
[36] 胡春辉. 时间域时移多尺度全波形反演[D]. 合肥: 中国科学技术大学, 2017.
[36] Hu C H. A time-shift method for time domain multiscale full waveform inversion[D]. Hefei: University of Science and Technology of China, 2017.
[37] 曲英铭, 李振春, 黄建平, 等. 基于多尺度双变网格的时间域全波形反演[J]. 石油物探, 2016, 55(2):241-250.
[37] Qu Y M, Li Z C, Huang J P, et al. Full waveform inversion based on multi-scale dual-variable grid in time domain[J]. Geophysical Prospecting for Petroleum, 2016, 55(2):241-250.
[38] Qu Y, Li Z, Huang J, et al. Multi-scale full waveform inversion for areas with irregular surface topography in an auxiliary coordinate system[J]. Exploration Geophysics, 2016, 49(1):68-80.
doi: 10.1071/EG16037
[39] Choi Y, Alkhalifah T. Source-independent time-domain waveform inversion using convolved wavefields:Application to the encoded multisource waveform inversion[J]. Geophysics, 2011, 76(5):R125-R134.
doi: 10.1190/geo2010-0210.1
[40] Guo Y, Huang J, Cui C, et al. Multi-source multi-scale source-independent full waveform inversion[J]. Journal of Geophysics and Engineering, 2019, 16(3):479-492.
doi: 10.1093/jge/gxz013
[1] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[2] 王莉利, 杜功鑫, 高新成, 王宁, 王维红. 基于U-Net网络的FWI地震低频恢复方法[J]. 物探与化探, 2023, 47(2): 391-400.
[3] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[4] 孟庆奎, 张文志, 高维, 舒晴, 李瑞, 徐光晶, 张凯淞. 重力位场小波多尺度分解性质的分析与应用[J]. 物探与化探, 2022, 46(4): 946-954.
[5] 姚含, 徐海. 基于梯度投影法的全变差正则化全波形反演[J]. 物探与化探, 2022, 46(4): 977-981.
[6] 张杨, 王君恒, 曹炼鹏, 冯裕华, 朱江皇, 付强. 曲波变换在位场信号提取中的应用研究[J]. 物探与化探, 2021, 45(1): 84-94.
[7] 程一鸣, 李怀良, 庹先国, 王耀彬, 王亚娟, 沈统. 一种可靠的强噪声三分量微地震数据初至拾取方法[J]. 物探与化探, 2019, 43(2): 367-372.
[8] 申有义, 田忠斌, 王建青, 杨晓东. 基于多尺度边缘检测技术的煤系灰岩裂缝分布预测[J]. 物探与化探, 2018, 42(4): 725-730.
[9] 李芳, 王林飞, 何辉. 基于二维经验模式分解的重力资料多尺度分析[J]. 物探与化探, 2018, 42(4): 731-737.
[10] 周斯琛, 李振春, 张敏, 张凯. 基于截断牛顿法的频率域全波形反演方法[J]. 物探与化探, 2017, 41(1): 147-152.
[11] 苗永康. 叠前地震全波形反演实际应用的关键影响因素[J]. 物探与化探, 2016, 40(5): 947-954.
[12] 牟力, 陈召曦. 重力资料多尺度分析最优小波基的选择[J]. 物探与化探, 2015, 39(5): 1013-1019.
[13] 王赛昕, 颜廷杰, 周栋良. 赣中新余式铁矿地面和井中磁测资料综合处理解释[J]. 物探与化探, 2015, 39(3): 478-484.
[14] 陈明. 广东地区矿床密集区的重力异常分析[J]. 物探与化探, 2014, (3): 465-470.
[15] 薛永安, 王勇, 李红彩, 陆树勤. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com