Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 1-11    DOI: 10.11720/wtyht.2022.1150
  综述 本期目录 | 过刊浏览 | 高级检索 |
含油气盆地甲烷微渗漏及其油气勘探意义研究进展
邹雨1(), 王国建1, 杨帆2, 陈媛1
1.中国石化石油勘探开发研究院 无锡石油地质研究所,江苏 无锡 214126
2.中国石化石油勘探开发研究院,北京 100083
Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration
ZOU Yu1(), WANG Guo-Jian1, YANG Fan2, CHEN Yuan1
1. Wuxi Research Institute of Petroleum Geology,Sinopec Petroleum Exploration and Production Research Institute,Wuxi 214126,China
2. Sinopec Petroleum Exploration and Production Research Institute,Beijing 100083,China
全文: PDF(1474 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

21世纪以来,地表微渗漏表现特征的形成机理研究已取得显著进展,对油气勘探具有重要意义。含油气盆地微渗漏气体是以甲烷为主,在地下从烃源岩或储层出发,近于垂向微运移,而在地表造成的化学、物理及生物变化特征是地下油气藏的近似映射,它是客观存在的,是“石油渗漏系统”中一个重要组成部分,目前已替代宏观渗漏成为地表追踪地下油气藏最有效的“窗口”。甲烷微渗漏监测可以在地表、水体及大气中直接进行,测试获得的含甲烷烃类气体组分浓度及同位素组成是地下油气评价的第一手重要资料。甲烷微渗漏间接监测数据主要来源于地表微生物、植被、矿物、放射性及磁性等,与直接获得的化探数据相似,这些不同的地表异常监测数据都可区别于远离油气藏地表的背景值,其异常分布区将成为有利勘探区的靶向。进入综合勘探时代,甲烷微渗漏机理的深入认识,单一监测方法及其片面认识的避免,地表综合监测方法的思路转变,以及数理分析新体系的建立,必将在未来油气勘探中发挥越来越重要的作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹雨
王国建
杨帆
陈媛
关键词 甲烷微渗漏综合勘探研究进展    
Abstract

Great progress has been made in the formation mechanisms of surface characteristics of gas microseepagesince the start of the 21st century, which is significant for oil-gas exploration. The microseepage in petroliferous basins is dominated by methane, which migrates nearly vertically from source rocks or reservoirs toward ground surface. The chemical, physical, and biological variation characteristics produced on the ground surface approximately reflect the oil reservoirs underground. Therefore, the methane microseepage is an objective and important part of the petroleum seepage system and has replaced microseepage as the most effective window for the tracing of underground reservoirs on the ground surface at present. Methane microseepage can be directly monitored on ground surface and in water and atmosphere, and the component concentrations and isotopic composition of methane-bearing hydrocarbon gases serve as the first-hand important data for the assessment of underground oil and gas. The data indirectly monitored mainly source from microorganisms, vegetation, minerals, radioactivity, and magnetism on the ground surface. Similar to the geochemical exploration data directly obtained, these abnormal data canbe distinguished from the background values of the ground surface far away from the oil reservoirs, and the distribution areas of the anomalies will become important targets of favorable exploration areas. It will play an increasingly important role in the future integrated oil and gas explorationto gain in-depth understanding of methane microseepage mechanisms, avoid single monitoring method and one-sided understanding, transform ideas to adoptsurface integrated monitoring methods, and establish new mathematical analysis systems.

Key wordsmethane    microseepage    integrated exploration    research progress
收稿日期: 2021-03-17      修回日期: 2021-03-28      出版日期: 2022-02-20
ZTFLH:  P632  
基金资助:国家自然科学基金项目“近地表轻烃来源判识模型及其油气勘探应用基础研究”(41872126)
作者简介: 邹雨(1992-),男,博士,工程师,研究方向为油气地球化学勘探。Email: zouyu1992.syky@sinopec.com
引用本文:   
邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
ZOU Yu, WANG Guo-Jian, YANG Fan, CHEN Yuan. Research progress of methane microseepage in petroliferous basins and its significance for oil-gas exploration. Geophysical and Geochemical Exploration, 2022, 46(1): 1-11.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1150      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/1
Fig.1  自然界甲烷生成与释放示意
微渗漏 宏观渗漏
观察方法 物理、化学及生物手段 地表现象宏观可见(如泥火山)
烃类组成 轻烃(C1-C5),可挥发芳烃 轻烃,可挥发的芳烃,重质/轻质原油
运移机制 微裂缝中的连续气相流动 沿构造间断处渗出
运移方向 以垂向为主 以横向、侧向为主
地表通量 约10 mg/(m2·d)[12] 100~1 000 mg/(m2·d)[12]
地表分布特征 面源 点源
受地表因素干扰程度 易受影响 不受影响
全球含油气盆地出现频率 > 80%[19] 约20%[25]
与油气藏空间关系 油气藏上方或上方附近 沿地表不整合面或断层分布
油气勘探前景 较大 较小(基本于20世纪完成)
Table 1  含油气盆地微渗漏和宏观渗漏不同特征的对比
地表监测 水体监测 大气监测
监测对象 土壤
(酸解烃、热释烃、顶空气)
钻井顶空气 水体
(溶解态烃、游离态烃)
水底沉积物 大气
(光谱特征)
Table 2  甲烷微渗漏直接监测方法
Fig.2  甲烷微渗漏地表物理、化学及生物异常特征[12]
地表异常 生物异常 矿物学化学特征异常 地球物理特征异常
监测对象 微生物
(数量和活性)
植被
(光谱特征遥感)
矿物
(光谱特征遥感)
放射性
(伽马射线强度)
磁性
Table 3  甲烷微渗漏间接监测方法
Fig.3  天然气地化分析投图[3,20,37]
数理分析 计算模型及公式
单变量异常阈值计算 符合多
重正态
分布
l1= U i - 1 S i 2 - U i S i - 1 2 + S i S i - 1 ( U i - U i - 1 ) 2 + ( S i - 1 2 - S i 2 ) ln ( N i S i - 1 / N i - 1 S i ) S i 2 - S i - 1 2,当Si-1Si,Ui-1<l1<Ui;
l2=0.5(Ui+Ui-1)+ S i 2 U i - U i - 1ln N i - 1 N i,当Si-1=Si;
式中Ui为均值,Si为标准差,Ni为先验概率,l1为计算结果
不符合
正态分
多重分形模型:A(≥ρ)∝ρ-β;
式中A(≥ρ)代表等高线包围的区域(等高线值≥ρ),∝表示成正比,β为一个指数,对应于
数据范围等高线集假定的值
小波分析
(对数归一化)
Yi= X i - X - MAX - MIN;式中Xi为初始数据,Yi为计算结果
多变量异常的综合参数 符合多
重正态
分布
密度分布函数Fi(X)=(2π)-m/2|Σi|-1/2exp[-0.5(X- u - i) Σ i - 1(X- u - i)];
后验概率Pi= N i F i ( X ) j = 0 g - i N j F j ( X );多变量异常识别综合参数Gi= P i - P i MAX P i + P i MAX;
式中m为变量数, u - i为期望向量,Σi为协方差矩阵
不符合
正态分
逻辑乘法γj,k=2 | S j ? S k | | S j | + | S k |,jk;
式中Sj为关联的每个单变量的总体;
人工神经网络可以基于逻辑乘法聚类分析结果作为初始已知样本
Table 4  背景与异常数理分析及其计算方法[38,39]
Fig.4  有利油气远景区的甲烷微渗漏综合勘探流程
[1] Etiope G. The Earth’s hydrocarbon degassing [M]. Switzerland: Springer International Publishing, 2015.
[2] Sechman H, Kotarba M J, Kędzior S, et al. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland[J]. International Journal of Coal Geology, 2020,227:103529.
doi: 10.1016/j.coal.2020.103529
[3] Kotarba M J, Więcław D, Bilkiewicz E, et al. Origin, secondary processes and migration of oil and natural gas in the central part of the Polish Outer Carpathians[J]. Marine and Petroleum Geology, 2020,121:104617.
doi: 10.1016/j.marpetgeo.2020.104617
[4] Etiope G, Ehlmann B L, Schoell M. Low temperature production and exhalation of methane from serpentinized rocks on Earth: A potential analog for methane production on Mars[J]. Icarus, 2013,224(2):276-285.
doi: 10.1016/j.icarus.2012.05.009
[5] Etiope G, Schwietzke S. Global geological methane emissions: An update of top-down and bottom-up estimates[J]. Elementa-Science of the Anthropocene, 2019,47(7):1-9.
[6] 许跃, 唐俊红, 王国建, 等. 含油气盆地地质甲烷释放研究综述[J]. 地质学报, 2016,90(3):553-558.
[6] Yu Y, Tang J H, Wang G J, et al. A comprehensive review of geologic methane emission in hydrocarbon-prone areas[J]. Acta Geological Sinica, 2016,90(3):553-558.
[7] 唐俊红, 高忆平, 施明才, 等. 含油气盆地微渗漏甲烷运移机制研究进展[J]. 杭州电子科技大学学报:自然科学版, 2019,39(2):64-69.
[7] Tang J H, Gao Y P, Shi M C, et al. A preliminary review of gas migration mechanisms of methane microseepage in hydrocarbon-prone areas[J]. Journal of Hangzhou Dianzi University:Natural Sciences, 2019,39(2):64-69.
[8] Ciotoli G, Procesi M, Etiope G, et al. Influence of tectonics on global scale distribution of geological methane emissions[J]. Nature Communications, 2020,11(1):2305.
doi: 10.1038/s41467-020-16229-1
[9] 王国建, 汤玉平, 唐俊红, 等. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018,42(1):21-27.
[9] Wang G J, Tang Y P, Tang J H, et al. Experimental simulation of the effect of faults on vertical hydrocarbon microseepage[J]. Geophysical and Geochemical Exploration, 2018,42(1):21-27.
[10] 王国建, 唐俊红, 汤玉平, 等. 油气藏上方地层中不同赋存态微渗漏轻烃特征初步模拟实验研究[J]. 石油实验地质, 2017,39(2):261-266.
[10] Wang G J, Tang J H, Tang Y P, et al. Simulation of microseepage of light hydrocarbon of different occurrence states in strata above reservoirs[J]. Petroleum Geology & Experiment, 2017,39(2):261-266.
[11] He J, Wang J, Milsch H, et al. The characteristics and formation mechanism of a regional fault in shale strata: Insights from the Middle-Upper Yangtze, China[J]. Marine and Petroleum Geology, 2020,121:104592.
doi: 10.1016/j.marpetgeo.2020.104592
[12] Asadzadeh S, de Souza Filho de Souza Filho. Spectral remote sensing for onshore seepage characterization: A critical overview[J]. Earth-Science Reviews, 2017,168:48-72.
doi: 10.1016/j.earscirev.2017.03.004
[13] Allek K, Boubaya D, Bouguern A, et al. Spatial association analysis between hydrocarbon fields and sedimentary residual magnetic anomalies using Weights of Evidence: An example from the Triassic Province of Algeria[J]. Journal of Applied Geophysics, 2016,135:100-110.
doi: 10.1016/j.jappgeo.2016.09.026
[14] 顾磊, 许科伟, 汤玉平, 等. 基于高通量测序技术研究页岩气区上方微生物多样性[J]. 石油实验地质, 2020,42(3):443-450,458.
[14] Gu L, Xu K W, Tang Y P, et al. Microbial diversity above a shale gas field using high-throughput sequencing[J]. Petroleum Geology & Experiment, 2020,42(3):443-450,458.
[15] Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment[J]. Marine and Petroleum Geology, 2005,22(4):457-477.
doi: 10.1016/j.marpetgeo.2004.08.003
[16] Sobolev I S, Bredikhin N P, Bratec T, et al. Chemical diagenesis in near-surface zone above oil fields in geochemical exploration[J]. Applied Geochemistry, 2018,95:33-44.
doi: 10.1016/j.apgeochem.2018.05.005
[17] 齐小平, 张友焱, 杨辉, 等. 柴达木盆地三湖地区天然气有利勘探区带(目标)遥感物化探综合分析与评价[J]. 中国石油勘探, 2012,17(5):17-26.
[17] Qi X P, Zhang Y Y, Yang H, et al. Analysis and evaluation of beneficial gas exploration zone based on remote sensing geophysical and geochemical methods in Sanhu area of Qaidam basin[J]. China Petroleum Exploration, 2012,17(5):17-26.
[18] 王国建, 杨帆, 卢丽, 等. 采样季节对油气化探中游离烃方法的影响讨论[J]. 石油天然气学报, 2010,32(4):166-170,429.
[18] Wang G J, Yang F, Lu L, et al. Influence of sampling seasons on soil gas method in surface geochemical prospecting for oil and gas[J]. Journal of Oil and Gas Technology, 2010,32(4):166-170,429.
[19] Schumacher D Integrating hydrocarbon microseepage data with seismic data doubles exploration success[C]//Proceedings thirty-fourth annual conference and exhibition,Indonesian Petroleum Association, Indonesia, 2010.
[20] Milkov A V, Etiope G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry, 2018,125:109-120.
doi: 10.1016/j.orggeochem.2018.09.002
[21] Milkov A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry, 2011,42(2):184-207.
doi: 10.1016/j.orggeochem.2010.12.003
[22] 赵静, 梁前勇, 张莉, 等. 基于酸解烃判别台湾海峡盆地西部坳陷含油气系统的油气藏属性[J]. 物探与化探, 2018,42(3):436-441.
[22] Zhao J, Liang Q Y, Zhang L, et al. Oil and gas reservoir attribute discrimination based on surface sediment acid-extraction hydrocarbon in the western depression of Taiwan Strait Basin[J]. Geophysical and Geochemical Exploration, 2018,42(3):436-441.
[23] Sechman H, Guzy P, Kaszuba P, et al. Direct and indirect surface geochemical methods in petroleum exploration: A case study from eastern part of the Polish Outer Carpathians[J]. International Journal of Earth Sciences, 2020,109(5):1853-1867.
doi: 10.1007/s00531-020-01876-y
[24] 冯俊熙, 杨胜雄, 孙晓明, 等. 琼东南盆地甲烷微渗漏活动地球化学示踪研究[J]. 西南石油大学学报:自然科学版, 2018,40(3):63-75.
[24] Feng J X, Yang S X, Sun X M, et al. Geochemical tracers for methane microleakage activity in the Qiongdongnan basin[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2018,40(3):63-75.
[25] Hunt J M. Petroleum geochemistry and geology[M]. New York: Freeman and Co., 1996.
[26] 杨金秀, 宋朋霖, 王红亮, 等. 琼东南盆地天然气水合物成藏模式及主控因素分析[J/OL]. 石油与天然气地质. 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.
[26] Yang J X, Song P L, Wang H L, et al. Gas hydrate accumulation model and major controlling factors in Qiongdongnan Basin[J/OL]. Oil & Gas Geology, 2019:1-17[2021-02-04]. http://kns.cnki.net/kcms/detail/11.4820.te.20191126.1454.004.html.
[27] Klusman R W, Saaed M A. Comparison of light hydrocarbon microseepage mechanisms [G]//Schumacher D, Abrams M A. Hydrocarbon migration and its near-surface expression. Oklahoma:AAPG Memoir. 1996: 157-168.
[28] Abrams M A. Marine seepage variability and its impact on evaluating the surface migrated hydrocarbon seep signal[J]. Marine and Petroleum Geology, 2020,121:104600.
doi: 10.1016/j.marpetgeo.2020.104600
[29] Hirst B, Gibson G, Gillespie S, et al. Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling[J]. Geophysical Research Letters, 2004,31(12):1-4.
[30] Zhou Q, Xu X, Xu H, et al. Surface microbial geochemistry of the Beihanzhuang Oilfield, northern Jiangsu, China[J]. Journal of Petroleum Science and Engineering, 2020,191:107140.
doi: 10.1016/j.petrol.2020.107140
[31] 汤玉平, 宁丽荣, 蒋涛, 等. 积雪油气化探方法试验研究[J]. 石油实验地质, 2009,31(3):287-291.
[31] Tang Y P, Ning L R, Jiang T, et al. Experimental research on the oil and gas geochemical exploration method of snow cover[J]. Petroleum Geology & Experiment, 2009,31(3):287-291.
[32] 赵克斌, 陈银节, 孙长青. 油气化探异常的稳定性及油气地质意义[J]. 地质通报, 2009,28(11):1620-1627.
[32] Zhao K B, Chen Y J, Sun C Q. Stability and petroleum geological significance of hydrocarbon geochemical Anomaly[J]. Geological Bulletin of China, 2009,28(11):1620-1627.
[33] 杨俊, 沈忠民, 王国建, 等. 油气化探异常双因素评价方法——以渤海湾盆地济阳坳陷临南—钱官屯地区为例[J]. 石油实验地质, 2018,40(2):295-302.
[33] Yang J, Shen Z M, Wang G J, et al. Double-factor evaluation for oil and gas geochemical anomalies: A case study of Linnan-Qianguantun areas, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2018,40(2):295-302.
[34] Huang S, Chen S, Wang D, et al. Hydrocarbon micro-seepage detection from airborne hyper-spectral images by plant stress spectra based on the PROSPECT model[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,74:180-190.
doi: 10.1016/j.jag.2018.09.012
[35] Senouci M, Allek K. Application of Bayesian classifier to magnetic and gamma ray spectrometry data for targeting hydrocarbon microseepages[J]. Journal of Applied Geophysics, 2020,181:104145.
doi: 10.1016/j.jappgeo.2020.104145
[36] Baciu C, Ionescu A, Etiope G. Hydrocarbon seeps in Romania: Gas origin and release to the atmosphere[J]. Marine and Petroleum Geology, 2018,89:130-143.
doi: 10.1016/j.marpetgeo.2017.06.015
[37] Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Organic Geochemistry, 1996,24(10):947-955.
doi: 10.1016/S0146-6380(96)00090-3
[38] Zhang L, Bai G, Zhao K, et al. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons[J]. Marine and Petroleum Geology, 2006,23(5):529-542.
doi: 10.1016/j.marpetgeo.2006.04.003
[39] Zhang L, Bai G, Zhao Y. Data-processing and recognition of seepage and microseepage anomalies of acid-extractable hydrocarbons in the south slope of the Dongying depression, eastern China[J]. Marine and Petroleum Geology, 2014,57:385-402.
doi: 10.1016/j.marpetgeo.2014.06.009
[40] 荣发准, 陈昕华, 孙长青, 等. 近地表油气化探异常的确定与解释评价[J]. 物探与化探, 2013,37(2):212-217,24.
[40] Rong F Z, Chen X H, Sun C Q, et al. The determination and interpretation of near-surface geochemical oil-gas anomaly[J]. Geophysical and Geochemical Exploration, 2013,37(2):212-217,24.
[41] 王珺璐, 贺永红, 王萌, 等. 层次分析和特征值分析相结合的物化探综合油气评价[J]. 物探与化探, 2015,39(4):762-767.
[41] Wang J L, He Y H, Wang M, et al. The comprehensive evaluation of oil and gas exploration combining hierarchy analysis and eigenvalue analysis[J]. Geophysical and Geochemical Exploration, 2015,39(4):762-767.
[42] 孙忠军. 中国油气化探的成功案例[J]. 地质通报, 2009,28(11):1562-1571.
[42] Sun Z J. Case histories of hydrocarbon survey success in China[J]. Geological Bulletin of China, 2009,28(11):1562-1571.
[43] 汤玉平, 赵克斌, 吴传芝, 等. 中国油气化探的近期进展和发展方向[J]. 地质通报, 2009,28(11):1614-1619.
[43] Tang Y P, Zhao K B, Wu C Z, et al. Recent advances and developing trend of hydrocarbon geochemical exploration in China[J]. Geological Bulletin of China, 2009,28(11):1614-1619.
[1] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[2] 朱卫平. 长江铀矿田花岗岩与铀成矿年代学研究进展[J]. 物探与化探, 2022, 46(6): 1327-1337.
[3] 王国建, 卢丽, 杨俊, 李吉鹏, 任春, 唐俊红, 李武. 壤中游离气方法及其在油气化探中的应用[J]. 物探与化探, 2021, 45(1): 11-17.
[4] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[5] 王国建, 汤玉平, 唐俊红, 李吉鹏, 杨俊, 李兴强. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018, 42(1): 21-27.
[6] 褚厚娟, 郝纯, 邓诗财, 麻婷婷, 梅海. 木里地区水合物轻烃微渗漏微生物群落及烃氧化菌响应特征研究[J]. 物探与化探, 2017, 41(6): 1037-1043.
[7] 周亚龙, 张富贵, 杨志斌, 唐瑞玲, 孙忠军, 张舜尧, 王惠艳. 祁连山冻土区天然气水合物游离气测量技术试验[J]. 物探与化探, 2017, 41(6): 1075-1080.
[8] 张富贵, 张舜尧, 唐瑞玲, 王惠艳, 杨志斌, 周亚龙, 孙忠军. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017, 41(6): 1027-1036.
[9] 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 多目标化探数据与油气藏指标特征的相关性研究[J]. 物探与化探, 2015, 39(3): 466-472.
[10] 李杰, 施泽明, 高琴, 倪师军, 张成江, 李世勇. 我国城市地球化学热点领域研究进展及展望[J]. 物探与化探, 2012, 36(3): 429-434.
[11] 郑洪伟, 李廷栋, 高锐. 青藏高原地震层析成像的研究进展[J]. 物探与化探, 2011, 35(2): 160-164.
[12] 王国建, 唐俊红, 范明, 卢丽, 黄欣. 油气微渗漏中的随水迁移机制[J]. 物探与化探, 2010, 34(3): 294-297.
[13] 汤玉平, 王国建, 程同锦. 烃类垂向微渗漏理论研究现状及发展趋势[J]. 物探与化探, 2008, 32(5): 465-469.
[14] 夏响华, 陈银节, 姚俊梅, 朱怀平. 川西及松辽南部油气微渗漏动力学模拟[J]. 物探与化探, 2003, 27(6): 458-461.
[15] 蒋涛, 陈浙春. 烃类垂向微渗漏及其地表异常显示[J]. 物探与化探, 2003, 27(2): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com