Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 394-402    DOI: 10.11720/wtyht.2021.1322
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
NURE航空计划回顾与新时代航空γ能谱勘查启示
李敬敏(), 米耀辉, 骆遥()
中国自然资源航空物探遥感中心,北京 100083
A review of NURE airborne program and suggestions on airborne gamma-ray spectrometry survey in the new era
LI Jing-Min(), MI Yao-Hui, LUO Yao()
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
全文: PDF(1643 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

国家铀资源评价(NURE)计划实现了覆盖美国本土和阿拉斯加的1∶250 000 NTMS图幅航空γ能谱测量和航磁测量,通过简要回顾该计划历程,重点针对NURE中航空地球物理勘查(航空γ能谱和航磁测量),讨论了航空地球物理勘查中测量技术、数据处理及解释方法等。NURE航空测量在铀矿勘查和辐射环境评价、洲际航空地球物理编图等领域发挥了巨大作用,产生了意义深远的影响。在总结NURE航空测量经验和做法的基础上,针对我国航空γ能谱测量勘查现状,建议从国家层面进行顶层设计,尽快实施我国陆域范围内的航空γ能谱和航磁框架性测量,实现对我国陆域航空γ能谱测量全覆盖,建设具有中国特色的航空γ能谱测量与监测体系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李敬敏
米耀辉
骆遥
关键词 NURE计划航空γ能谱铀矿勘查航空地球物理放射性    
Abstract

This paper briefly reviews the history and the overall work deployment of the U.S. National Uranium Resource Evaluation (NURE) program, with emphasis placed on the key techniques of airborne exploration. The airborne exploration included airborne gamma-ray spectrometry (AGRS) and aeromagnetic survey, which collected radiometric and magnetic data over the conterminous United States and Alaska. The airborne program systematically covered each 1° by 2° national topographic map series (NTMS) quadrangles, which were used to locate potential radioactive mineral deposits. The program played an important role in uranium resource and environmental radiation level evaluation, which has far-reaching definition and meaning. The experience and practices of the program should be used for reference. According to the current status of China's survey, top-level design for AGRS should be strengthened. This paper also proposes a national program of AGRS surveys for achieving coverage of terrestrial radioactivity and building a measurement and monitoring system with Chinese characteristics.

Key wordsU.S. National Uranium Resource Evaluation (NURE) program    airborne gamma-ray spectrometry    uranium prospecting    airborne geophysical surveys    radioactivity
收稿日期: 2020-06-23      修回日期: 2020-12-30      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:国家重点研发计划“深地资源勘查开采”重点专项项目(2017YFC0602100);国家重点研发计划“深地资源勘查开采”重点专项项目(2017YFC0602000);中国地质调查局地质调查项目(DD20191001);中国地质调查局地质调查项目(DD20189410);中国地质调查局地质调查项目(DD20190436)
通讯作者: 骆遥
作者简介: 李敬敏(1983-),女,高级工程师,长期从事航空物探/遥感信息化建设及地图制图学研究工作。Email: jingminl@163.com
引用本文:   
李敬敏, 米耀辉, 骆遥. NURE航空计划回顾与新时代航空γ能谱勘查启示[J]. 物探与化探, 2021, 45(2): 394-402.
LI Jing-Min, MI Yao-Hui, LUO Yao. A review of NURE airborne program and suggestions on airborne gamma-ray spectrometry survey in the new era. Geophysical and Geochemical Exploration, 2021, 45(2): 394-402.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1322      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/394
Fig.1  新墨西哥州区块1°×2°图幅及地形
Fig.2  新墨西哥州区块测网和飞行高度[9,10,11,12,13,14,15,16,17,18,19,20,21]
Fig.3  美国能源部的航空放射性标定装置[23]
Fig.4  北美γ射线空气吸收剂量率[5]
[1] 牛翠袆, 卿敏, 白万成, 等. 中国金矿资源潜力预测评价[M]. 北京: 地质出版社, 2017.
[1] Niu C W, Qing M, Bai W C, et al. Prediction and evaluation of potential gold resource in China[M]. Beijing: Geology Publishing House, 2017.
[2] 张金带, 李子颖, 蔡煜琦, 等. 全国铀矿资源潜力评价工作进展与主要成果[J]. 铀矿地质, 2012,28(6):321-326.
[2] Zhang J D, Li Z Y, Cai Y Q, et al. The main advance and achievements in the potential evaluation of Uranium resource in China[J]. Uranium Geology, 2012,28(6):321-326.
[3] International Atomic Energy Agency. Airborne gamma ray spectrometer surveying[R]. IAEA Technical Reports Series, 1991.
[4] 李怀渊, 江民忠, 陈国胜, 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018,42(4):645-652.
[4] Li H Y, Jiang M Z, Chen G S, et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical and Geochemical Exploration, 2018,42(4):645-652.
[5] Duval J S, Carson J M, Holman P B, et al. Terrestrial radioactivity and gamma-ray exposure in the United States and Canada[R]. U.S. Geological Survey Open-File Report 2005-1413, 2005.
[6] Hill P L, Kucks R P, Ravat D. Aeromagnetic and aeroradiometric data for the conterminous United States and Alaska from the national uranium resources evaluation (NURE) program of the U.S. department of energy[R]. U.S. Geological Survey Open-File Report 2009-1129, 2009.
[7] Ferguson R B, Price V J. National uranium resource evaluation (NURE) program-hydrogeochemical and stream sediment reconnaissance in the eastern United States[J]. Journal of Geochemical Exploration, 1976,6(1-2):103-117.
doi: 10.1016/0375-6742(76)90009-1
[8] Smith S M. National geochemical database-reformatted data from the national uranium resource evaluation (NURE) hydrogeochemical and stream sediment reconnaissance (HSSR) program[R]. U.S. Geological Survey Open-File Report 1997-492, 1997.
[9] Carson Geoscience Inc. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas; Carlsbad, El Paso, Fort Sumner, Holbrook, Las Cruces, and Roswell Quadrangles[R]. U.S. Department of Energy, Open-File Report GJBX-412-81, 1981.
[10] Geodata International Inc. Aerial radiometric and magnetic survey of the Tucumcari national topographic map, NI-13-3, Texas and New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-33-76, 1976.
[11] Geodata International Inc. Aerial radiometric and magnetic survey of the Clovis national topographic map, NI 13-6, Texas and New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-33-76, 1976.
[12] Geodata International Inc. Aerial radiometric and magnetic survey of the Brownfield National topographic map, NI-13-9, Texas and New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-33-76, 1976.
[13] Geodata International Inc. Aerial radiometric and magnetic survey, Tularosa national topographic map, New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-67-79, 1979.
[14] Geodata International Inc. Aerial radiometric and magnetic survey, Socorro national topographic map, New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-163-79, 1979.
[15] Geodata International Inc. Aerial radiometric and magnetic survey, Aztec national topographic map, New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-65-80, 1980.
[16] Geodata International Inc. Aerial radiometric and magnetic survey, Hobbs national topographic map, Texas, New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-228-80, 1980.
[17] Geometrics. Aerial gamma ray and magnetic survey Raton basin project, Shiprock & Gallup quadrangles, Arizona/New Mexico, and Albuquerque Quadrangle, New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-116-79, 1979.
[18] Geometrics. Aerial gamma ray and magnetic survey, Raton basin project the Raton and Santa Fe quadrangles of New Mexico[R]. U.S. Department of Energy, Open-File Report GJBX-9-80, 1980.
[19] Texas Instruments Inc. Aerial radiometric and magnetic reconnaissance survey of portions of Arizona-New Mexico; Clifton, Douglas, Mesa, Nogales, Silver City, and Tucson Quadrangles[R]. U.S. Department of Energy, Open-File Report GJBX-23-79, 1979.
[20] Texas Instruments Inc. Aerial radiometric and magnetic reconnaissance survey of portions of Arizona, Idaho, Montana, New Mexico, South Dakota and Washington (Cut Bank, Shelby, Havre, Choteau, Great Falls, Lewistown, Butte, Pocatello, Twin Falls, Ritzville, Hot Springs, and Saint Johns Quadrangles)[R]. U.S. Department of Energy, Open-File Report GJBX-126-79, 1979.
[21] Texas Instruments Inc. Aerial radiometric and magnetic reconnaissance survey of portions of New Mexico, Oklahoma, and Texas, Dalhart Quadrangle[R]. U.S. Department of Energy, Open-File Report GJBX-46-80, 1980.
[22] EJ/T1032—2018航空伽玛能谱测量规范[S]. 北京: 核工业标准化研究所, 2018.
[22] EJ/T1032—2018 Specification for airborne gama-ray spectrometry survey[S]. Beijing: Institute for Standardization of Nuclear Industry, 2018.
[23] Ward D L. Construction of calibration pads facility, Walker Field, Grand Junction, Colorado[R]. U.S. Department of Energy, Open-File Report GJBX--37(78), 1978.
[24] L.K.B. Resources, Inc. Dynamic test range I-follow-on narrative report[R]. U.S. Department of Energy, Open-File Report GJBX-110-,81, 1981.
[25] 骆遥, 米耀辉. 航空伽玛能谱测量系统标定技术与标定程序[J]. 核电子学与探测技术, 2014,34(5):590-597.
[25] Luo Y, Mi Y H. Calibration for airborne gamma-ray spectrometric survey and its procedure[J]. Nuclear Electronics & Detection Technology, 2014,34(5):590-597.
[26] 崔林沛. 对美国物探的几点认识[J]. 国外地质勘探技术, 1989(7):15-19.
[26] Cui L P. Some understanding of American geophysical prospecting[J]. Foreign Geoexploration Technology, 1989(7):15-19.
[27] Purvance D, Novak E. National uranium resource evaluation, general procedure for calibration and reduction of aerial gamma-ray measurements: Specification BFEC 1250-B[R]. U.S. Department of Energy, Open-File Report GJBX-16-83, 1983.
[28] Duval J S. Radioactivity method[J]. Geophysics, 1980,45(11):1690-1694.
doi: 10.1190/1.1441059
[29] Aero Service. National uranium resource evaluation, airborne gamma-ray spectrometer and magnetometer survey: North/South Tieline[R]. U.S. Department of Energy, Open-File Report GJBX-386-81, 1981.
[30] 中国自然资源航空物探遥感中心. 中国及毗邻海域航空磁力△T异常图(1∶500万)[M]. 北京: 地质出版社, 2004.
[30] China Aero Geophysical Survey and Remote Sensing Center for Natural and Resources. Aeromagnetic anomaly map of China and adjacent sea areas 1∶5000000[M]. Beijing: Geological Publishing House, 2004.
[31] 王乃东. 有关1∶25万航磁系列图的几个问题[J]. 物探与化探, 2007,31(5):459-464.
[31] Wang N D. Some problems concerning 1∶250000 areomagnetic series maps[J]. Geophysical and Geochemical Exploration, 2007,31(5):459-464.
[32] DZ/T 0142—2010航空磁测技术规范[S]. 北京: 中国标准出版社, 2010.
[32] Z/T 0142—2010 Criterion of aeromagnetic survey [S]. Beijing: China Standard Press, 2010.
[33] 熊盛青, 于长春, 眭素文, 等. 中高山区高精度航磁方法技术[M]. 北京: 地质出版社, 2009.
[33] Xiong S Q, Yu C C, Sui S W, et al. High-precision aeromagnetic method technology in the mid-high mountain area[M]. Beijing: Geology Publishing House, 2018.
[34] 熊盛青, 周锡华, 薛典军, 等. 航空地球物理综合探测理论技术方法装备应用[M]. 北京: 地质出版社, 2018.
[34] Xiong S Q, Zhou X H, Xue D J, et al. Theory technology method instruments and application of comprehensive airborne geophysical exploration[M]. Beijing: Geology Publishing House, 2018.
[1] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[2] 吴成平, 杨雪, 于长春, 熊盛青, 范正国, 苏永军, 郝兴中. 利用磁场水平调整方法实现航磁数据融合——以山东省齐河—禹城地区为例[J]. 物探与化探, 2023, 47(4): 1071-1077.
[3] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[4] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[5] 余根锌. 福建省环境地表γ辐射剂量率估算与人居环境安全性评价[J]. 物探与化探, 2021, 45(1): 192-199.
[6] 李英宾, 谢明宏, 张占彬, 李毅, 魏滨, 张伟. 综合物探方法在上杭盆地古石背地区铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1283-1293.
[7] 杨剑洲, 龚晶晶, 唐世新, 胡树起. 广东省部分地区土壤放射性核素的测定和剂量评估[J]. 物探与化探, 2020, 44(2): 419-425.
[8] 吴燕清, 王世成, 丁园, 王青, 王文正. 氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究[J]. 物探与化探, 2019, 43(4): 726-733.
[9] 陈江源. 鄂尔多斯盆地南缘城阳—武沟地区航放异常铀找矿前景分析[J]. 物探与化探, 2019, 43(3): 509-521.
[10] 杜化宇, 李晓禄, 伍显红. 放射性测量方法在马鬃山地区铀金找矿中的应用效果[J]. 物探与化探, 2018, 42(4): 697-702.
[11] 金久强, 王金龙, 肖刚毅, 李健, 邓茂盛, 王志博, 蒋久明, 王启, 王鑫, 耿圣博. NASVD方法在航空γ能谱测量中的成图效果讨论[J]. 物探与化探, 2018, 42(4): 817-824.
[12] 毕征峰. 五莲县中东部地区放射性环境地质调查[J]. 物探与化探, 2018, 42(4): 833-838.
[13] 李健, 郭亮, 肖刚毅, 刘志强, 徐明, 金久强, 王志博, 邓茂盛, 李冰. AS350B3型直升机在中高山航空物探测量中的优势[J]. 物探与化探, 2018, 42(1): 192-198.
[14] 王金龙, 谢汝宽, 梁韧, 宋燕兵, 刘志强, 李健, 单希鹏. 高海拔山区航空地球物理飞机选型与飞行性能分析[J]. 物探与化探, 2017, 41(3): 556-559.
[15] 李林果, 李百祥. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com