Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (1): 141-148    DOI: 10.11720/wtyht.2020.1172
     方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于叠前反演的地应力预测方法应用
王超1, 宋维琪1, 林彧涵1, 张云银2, 高秋菊2, 魏欣伟2
1. 中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2. 中国石化胜利油田分公司物探研究院,山东 东营 257000
The prediction method of in-situ stress based on pre-stack anisotropic parameter inversion
Chao WANG1, Wei-Qi SONG1, Yu-Han LIN1, Yun-Yin ZHANG2, Qiu-Ju GAO2, Xin-Wei WEI2
1. College of Earth Science and Technology,China University of Petroleum(East China),Qingdao 266580,China
2. Institute of Geophysical Exploration,Shengli Oilfield Company,Sinopec,Dongying 257000,China
全文: PDF(6330 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在油气藏的勘探开发中,地应力与裂缝的分布有着密不可分的关系,而裂缝则是油气运移和聚集的重要通道,因而地应力的研究对油气开发有重要意义。文章以致密砂岩为研究对象,在横向各向同性岩层模型的基础上,考虑到砂泥层应力变化的复杂性,将地层假设为正交各向异性,以弹性阻抗反演出的弹性参数作为工区的背景场,进而获得了正交各向异性介质下的各向异性参数,计算了差应力之比。研究主要采用了各向异性阻抗方程,将地层弹性参数及裂缝弱度参数转化为各向异性参数,用基于正交各向异性模型下计算出的差应力之比同测井计算结果以及其他表征方式进行对比,检验致密砂岩地应力预测方法的准确性。研究结果表明,多种对照方法与正交介质模型假设下计算出的地应力结果基本一致,证明了正交各向异性模型应力预测方法在砂泥岩层中适用,对于未来低渗透油气藏的勘探开发有很好的指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超
宋维琪
林彧涵
张云银
高秋菊
魏欣伟
关键词 地应力砂泥岩正交各向异性叠前反演    
Abstract

In the exploration and development of oil and gas reservoirs,the in-situ stress is closely related to the distribution of fractures,while fracture is an important channel for migration and accumulation of oil and gas,so the study of in-situ stress is of great significance for oil and gas development.In this paper,tight sandstone was taken as the research object.On the basis of the transverse isotropic rock layer model and in consideration of the complexity of sand and mud layer stress changes,the formation was assumed to be orthotropic,the elastic parameters of the inverse elastic impedance were taken as the background field of the working area,then the anisotropic parameters in orthotropic medium were obtained,and the ratio of differential stresses was calculated.The anisotropic impedance equation was used in this study,and the elastic parameters and fracture flexibility parameters were converted into anisotropic parameters,in order to verify the accuracy of the prediction method for the in-situ stress of tight sandstone;the ratio of differential stress calculated under the orthotropic model was compared with the results of the same log calculation and various characterization methods.It is shown that the results of geostress calculated under the assumption of orthogonal medium model are basically the same as those calculated by various control methods,thus proving that the orthotropic model stress prediction method is applicable in sand and mudstone formations,and has a good guiding significance for the exploration and development of low permeability oil and gas reservoirs in the future.

Key wordsin-situ stress    sand-mudstone    orthotropic    pre-stack inversion
收稿日期: 2019-03-29      出版日期: 2020-03-03
:  P631  
基金资助:国家科技重大专项“致密油藏地应力地震预测技术研究”(2017ZX05072001-003)
作者简介: 王超(1994-),在读硕士研究生,主要从事地震资料反演及储层预测工作。Email: sdqd2013@163.com
引用本文:   
王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
Chao WANG, Wei-Qi SONG, Yu-Han LIN, Yun-Yin ZHANG, Qiu-Ju GAO, Xin-Wei WEI. The prediction method of in-situ stress based on pre-stack anisotropic parameter inversion. Geophysical and Geochemical Exploration, 2020, 44(1): 141-148.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1172      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I1/141
Fig.1  应力预测流程
Fig.2  反演结果进行处理
Fig.3  弹性参数和各向异性参数层位切片
a—vp;b—vs;c—ρ;d—ε(v);e—δ(v);f—γ(v)
Fig.4  曲率(左图)和曲率计算的应力(右图)表征的层位切片
Fig.5  最大地应力(左图)和最小地应力(右图)的层位切片
Fig.6  正交各向异性模型下差应力之比的层位切片(左图)和A井测井曲线同差应力计算结果对比(右图)
Fig.7  目的层断层解释图(黑色线为断层线)
[1] 黄荣樽, 陈勉, 邓金根 , 等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995,12(3):15-21.
[1] Huang R Z, Chen M, Deng J G , et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid and Completion Fluid, 1995,12(3):15-21.
[2] 葛洪魁, 王顺昌 . 地应力测试及其在勘探开发中的应用[J]. 中国石油大学学报:自然科学版, 1998,22(1):94-99.
[2] Ge H K, Wang S C . Ground stress testing and its application in exploration and development[J]. Journal of China University of Petroleum, 1998,22(1):94-99.
[3] 景锋, 盛谦, 余美万 . 地应力与岩石弹性模量随埋深变化及相互影响[ C]//全国岩石力学与工程学术大会, 2010.
[3] Jing F, Sheng Q, Yu M W . The change rule of geostress and the elatic modulus of rock with depth and their mutual impact[ C]//National Conference on Rock Mechanics and Engineering, 2010.
[4] 秦向辉, 孙进忠 . 地应力与岩石弹性模量关系试验研究[J]. 岩土力学, 2012,33(6):1689-1695.
[4] Qin X H, Sun S Z . Experimental study of relation between in-situ crustal stress and rock elastic modulus.[J]. Rock and Soil Mechanics, 2012,33(6):1689-1695.
[5] Gray F, Schmidt D, Delbecq F. Optimize shale gas field development using stresses and rock strength derived from 3D seismic data[C]// Canadian Uniconventional Resources and International Petroleum Conference, 2010.
[6] Gray F D . Methods and systems for estimating stress using seismic data[P]. United States Patent Application,20110182144A1.
[7] 陈天胜, 魏修成, 刘洋 . 一种新的各向异性弹性阻抗近似公式[J]. 石油物探, 2006,45(6):563-569.
[7] Chen T S, Wei X C, Liu Y . A new approximate formula for anisotropic elastic impedance[J]. Geophysical Prospecting for Petroleum, 2006,45(6):563-569.
[8] Martins J L . An approach for elastic impedance in weakly anisotropic media[J]. SEG Technical Program Expanded Abstracts, 2002,21(1):2478.
[9] 马妮, 印兴耀, 孙成禹 , 等. 基于正交各向异性介质理论的地应力地震预测方法[J]. 地球物理学报, 2017,60(12):4766-4775.
[9] Ma N, Yin X Y, Sun C Y , et al. The in-situ stress seismic prediction method based on the theory of orthorhombic anisotropic media[J]. Geophysics, 2017,60(12):4766-4775.
[10] Rüger Andreas, Tsvankin I . Using AVO for fracture detection:Analytic basis and practical solutions[J]. The Leading Edge, 1997,16(10):1429-1434.
[11] Hsu C J, Schoenberg M . Elastic waves through a simulated fractured medium[J]. Geophysics, 1993,58(7):964-977.
[12] Fatti J L, Smith G C, Vail P J , et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994,59(9):1362-1376.
[13] 李爱山, 印兴耀, 张繁昌 , 等. VTI介质中的弹性阻抗与参数提取[J]. 地球物理学进展, 2008,23(6):1878-1885.
[13] Li A S, Yin X Y, Zhang F C , et al. Elastic impedance in vti media and parameter extraction[J]. Progress in Geophysics, 2008,23(6):1878-1885.
[14] Connolly P . Elastic impedance[J]. Leading Edge, 1999,18(4):438-438.
[15] Martins J L . Elastic impedance in weakly anisotropic media[J]. Geophysics, 2006,71(3):73.
[16] Tarantola A. Inverse problem theory and methods for model parameter estimation[M]. Science Press, 2005.
[17] Bakulin , Andrey , Grechka . et al. Estimation of fracture parameters from reflection seismic data-Part I:HTI model due to a single fracture set[J]. Geophysics, 2000,65(6):1788-1802.
[18] Thomsen L, Anderson D L . Weak elastic anisotropy in global seismology[J]. 2014.
[19] Hunt L, Reynolds S, Hadley S , et al. Causal fracture prediction Curvature,stress,and geomechanics[J]. Leading Edge, 2011,30(11):1274-1286.
[1] 范占锋, 蔡建华, 赵伟. TSP在高地温—高地应力隧道地质预报中的问题及改进[J]. 物探与化探, 2022, 46(1): 268-274.
[2] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[3] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[4] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[5] 邓炜, 梁金强, 钟桐, 何玉林, 孟苗苗. 基于水合物指示因子的地震识别方法[J]. 物探与化探, 2021, 45(1): 57-67.
[6] 包培楠, 王维红, 李文龙, 褚松杰. CRP道集优化处理及其在大庆油田S区的应用[J]. 物探与化探, 2019, 43(5): 1030-1037.
[7] 章雄, 张本健, 梁虹, 徐敏, 张洞君, 曾旖. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018, 42(3): 545-554.
[8] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[9] 刘东明, 林振洲, 高文利, 孔广胜, 贾定宇. 藏南泽当科学钻探ZDSD-1孔超声成像测井解释[J]. 物探与化探, 2017, 41(4): 672-677.
[10] 魏文希, 师素珍, 孙超, 李世杰. 拟声波反演技术在识别煤层顶底板砂泥岩中的应用[J]. 物探与化探, 2016, 40(1): 220-224.
[11] 李尧. 基线差密度校正法的应用——以蓬莱9-1油田叠前反演处理为例[J]. 物探与化探, 2015, 39(5): 1020-1026.
[12] 蔡克汉, 张盟勃, 高改, 刘峰, 杜广宏, 许磊明. 基于叠前反演的储层预测技术在陕北黄土塬白云岩气藏的应用[J]. 物探与化探, 2014, 38(6): 1164-1171.
[13] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com