Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 755-767    DOI: 10.11720/wtyht.2025.0178
  综述 本期目录 | 过刊浏览 | 高级检索 |
大功率—超大功率电(磁)探测技术进展与展望
王珺璐1(), 陈辉1(), 罗先中1, 张晓飞1, 林品荣2, 俞炳1, 庞振山1,3
1.中国地质调查局 发展研究中心, 北京 100037
2.中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
3.自然资源部 矿产勘查技术指导中心, 北京 100037
High-power-ultrahigh-power electromagnetic exploration technology: Progress and outlook
WANG Jun-Lu1(), CHEN Hui1(), LUO Xian-Zhong1, ZHANG Xiao-Fei1, LIN Pin-Rong2, YU Bing1, PANG Zhen-Shan1,3
1. Development and Research Center, China Geological Survey, Beijing 100037, China
2. Institute of Geophysics and Geochemistry Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
3. Mineral Resource Exploration Technology Guidance Center, Ministry of Natural Resources, Beijing 100037, China
全文: PDF(5690 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电(磁)法探测技术历经百年发展,从早期的直流电阻率法、激发极化法,逐步发展为涵盖大地电磁法、人工源电磁法及各种混场源电磁法的地球物理探测技术体系。然而,在我国开启新一轮找矿突破战略行动的新阶段,出现了深部找矿需求增加、人文噪声干扰加剧及三维结构解释不足等问题,严重制约了传统电(磁)法的应用效果。为突破技术瓶颈,大功率—超大功率电(磁)法技术成为关键发展方向之一。大功率—超大功率电(磁)探测技术通过增大发射电流,可以压制人文噪声、增大探测深度,有助于实现高分辨、多参数的三维探测,推动了方法技术、观测平台以及应用场景的拓展与创新。本文梳理了大功率—超大功率电(磁)法仪器发展历程与相关技术研究现状,并指出激发极化法真三维全波形采集与三维反演、张量可控源电磁法采集与三维反演、时频电磁法多参数联合约束反演及广域电磁法多分量全区探测等技术,可以显著提升深部目标体的探测能力。未来需进一步攻克各向异性三维反演、带场源全域反演以及复杂约束下极化率、磁化率提取等问题,推动电(磁)法向大深度、高精度、智能化方向发展,更好地服务新一轮找矿突破战略行动。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王珺璐
陈辉
罗先中
张晓飞
林品荣
俞炳
庞振山
关键词 大功率—超大功率电磁探测新一轮找矿突破    
Abstract

Over the past century, electromagnetic exploration technology has evolved from direct current resistivity and induced polarization methods to a comprehensive geophysical system. Yet, in China's new mineral exploration phase, challenges like deep-mining needs, cultural noise, and weak 3D interpretation limit traditional methods. High-power-ultrahigh-power electromagnetic technology, by boosting transmission current, combats these issues. It enhances detection depth, enables 3D exploration, and drives technological and application innovation. This paper reviews the development of high-power-ultrahigh-power electromagnetic instruments and current research. It emphasizes that technologies like true 3D full-waveform IP collection and inversion, tensor CSAMT collection and inversion, and multi-parameter joint inversion of time-and frequency-domain EM methods can strengthen deep-target detection. Future research should tackle anisotropic 3D inversion, full-domain inversion with a field source, and extracting polarization and magnetization rates under complex constraints. These advances will propel electromagnetic methods toward greater depth, precision, and intelligence, supporting China's renewed mineral exploration efforts.

Key wordshigh-power-ultrahigh-power    electromagnetic exploration    new round of mineral exploration breakthrough
收稿日期: 2025-05-26      修回日期: 2025-06-11      出版日期: 2025-08-20
ZTFLH:  P631.1  
基金资助:深地国家科技重大专项“罗布莎及邻区蛇绿岩型铬铁矿定位机制与勘查增储示范”之课题三“蛇绿岩型铬铁矿精细探测技术”;中国地质调查局项目(DD20230355);中国地质调查局项目(DD20230356);云南省重大科技专项计划项目(202402AB080006-2)
通讯作者: 陈辉(1986-),男,博士,正高级工程师,主要从事找矿预测研究工作。Email:cgschenhui@163.com
作者简介: 王珺璐(1988-),男,博士,高级工程师,主要从事综合地球物理探测技术研究与找矿预测工作。Email:wangjunlu2007@126.com
引用本文:   
王珺璐, 陈辉, 罗先中, 张晓飞, 林品荣, 俞炳, 庞振山. 大功率—超大功率电(磁)探测技术进展与展望[J]. 物探与化探, 2025, 49(4): 755-767.
WANG Jun-Lu, CHEN Hui, LUO Xian-Zhong, ZHANG Xiao-Fei, LIN Pin-Rong, YU Bing, PANG Zhen-Shan. High-power-ultrahigh-power electromagnetic exploration technology: Progress and outlook. Geophysical and Geochemical Exploration, 2025, 49(4): 755-767.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0178      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/755
Fig.1  云南某矿区0线(a)和8线(b)激电中梯扫面大功率大极距与小功率小极距测量结果对比
仪器 功率/kW 厂家 方法 备注
GDD大功率直流激电仪 5 加拿大GDD公司 IP
DJF-10A大功率激电仪 10 北京地质仪器厂 IP
SuperTX发射系统 20 美国CG公司 IP
WDFZ-20T大功率智能发射机 20 重庆奔腾数控 IP
张量可控源电磁系统TXM-22 20 德国Metronix公司 CSAMT
FW全波形大功率激电仪 25 法国IRIS公司 IP
DDF20-1大功率时频激电发射机 25 重庆地质仪器厂 IP
V8多功能电法系统 30 加拿大凤凰公司 IP、CSAMT、TEM
GDP32 30 美国Zonge公司 IP、CSAMT、TEM
TRU50-1大功率电磁发射机 50 重庆地质仪器厂 IP
SEP地面电磁探测系统 50 中科院地质地球物理所 CSAMT 串联100kW
大功率电磁法发射机 60 地科院物化探所 IP、CSAMT
TX60A大功率电磁发射机 60 国科仪器(重庆) IP 串联200kW
AGE-XXL多功能时频电磁系统 75 俄罗斯KRUKO公司 TFEM
地空协同时频电磁探测系统 100 吉林大学 TEM
超大功率多功能电磁法发射系统 160 地科院物化探所 IP、CSAMT
JSGY-2广域电磁仪 180 继善高科 WFEM
震旦三维激电数据采集系统 180 紫金地球物理 IP
大功率建场法仪器系统系统Ч3C-4 200 中石油东方公司 IP
TFEM-4大功率恒流发射系统 400 中石油东方公司 TFEM 样机
极低频电磁法发射台 500 中国船舶集团 WEM
Table 1  常见大功率电磁法仪器设备统计
Fig.2  不同三维观测装置的示意
a—使用多芯电缆的多分支布局的S形电极排列[43];b—双重偏移极—偶极阵列[45];c—使用超大功率分布式采集系统的单极—L形偶极阵列[49]
Fig.3  伪三维与真三维电阻率成像结果对比[23]
a1—使用SN向发射、SN向接收的三维数据(伪三维);b1—EW使用EW向发射、EW向接收的三维数据(伪三维);c1—SN向和EW向分别发射、观测点矢量接收的三维数据(真三维);a2、b2和c2分别是从a1、b1 和c1三维结果中截取的剖面
Fig.4  大功率张量CSAMT和MT二维剖面结果对比[57]
a—大功率张量CSAMT二维反演结果;b—MT结果;c—岩心测量结果与张量CSAMT、MT的对比
Fig.5  中东PM 探区TFEM 实测数据反演结果[7]
a—约束界面的电阻率反演剖面;b—约束界面和电阻率的极化率反演剖面
Fig.6  WFEM与CSAMT一维数值模拟(a)及地震勘探应用效果(b)的对比[5,29]
a1—CSAMT一维数值模拟结果;a2—WFEM的Ex分量一维数值模拟结果;a3—WFEM的Hy分量一维数值模拟结果;b1—为WFEM应用效果;b2—地震成像结果
[1] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
doi: 10.6038/cjg2019M0633
[1] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic(EM)methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
[2] 林品荣, 郭鹏, 石福升, 等. 大深度多功能电磁探测技术研究[J]. 地球学报, 2010, 31(2):149-154.
[2] Lin P R, Guo P, Shi F S, et al. A study of the techniques for large-depth and multi-functional electromagnetic survey[J]. Acta Geoscientica Sinica, 2010, 31(2):149-154.
[3] 汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
doi: 10.6038/cjg20150807
[3] Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
[4] Xue G Q. The Development of near-source electromagnetic methods in China[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1):115-124.
[5] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019, 29(9):1809-1816.
[5] He J S. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9):1809-1816.
[6] 何展翔, 陈忠昌, 任文静, 等. 时频电磁(TFEM)勘探技术:数据采集系统[J]. 石油地球物理勘探, 2020, 55(5):1131-1138,937.
[6] He Z X, Chen Z C, Ren W J, et al. Time-frequency electromagnetic(TFEM) method:Data acquisition system and its application[J]. Oil Geophysical Prospecting, 2020, 55(5):1131-1138,937.
[7] 何展翔, 胡祖志, 王志刚, 等. 时频电磁(TFEM)技术:数据联合约束反演[J]. 石油地球物理勘探, 2020, 55(4):898-905,705.
[7] He Z X, Hu Z Z, Wang Z G, et al. Time-frequency electromagnetic(TFEM) technique:Step-by-step constraint inversion based on artificial fish swarm algorithm[J]. Oil Geophysical Prospecting, 2020, 55(4):898-905,705.
[8] Lu J X,Zhuo, X J, Liu Y, et al. The extremely low frequency engineering project for underground exploration[J]. Engineering, 2022,10:13-20.
[9] 滕吉文. 强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化[J]. 地球物理学进展, 2010, 25(3):729-748.
[9] Teng J W. Strengthening exploration of metallic minerals in the second depth space of the crust,accelerating development and industralization of new geophysical technology and instrumental equipment[J]. Progress in Geophysics, 2010, 25(3):729-748.
[10] 滕吉文, 薛国强, 宋明春. 第二深度空间矿产资源探查理念与电磁法找矿实践[J]. 地球物理学报, 2022, 65(10):3975-3985.
[10] Teng J W, Xue G Q, Song M C. Theory on exploring mineral resources in the second deep space and practices with electromagnetic method[J]. Chinese Journal of Geophysics, 2022, 65(10):3975-3985.
[11] 刘镜竹, 罗国平, 齐朝华. 频率域电磁测深中干扰的识别与压制[J]. 中国煤炭地质, 2024, 36(3):72-77.
[11] Liu J Z, Luo G P, Qi Z H. Identification and suppression for interference on frequecy-domain electromagnetic sounding[J]. Coal Geology of China, 2024, 36(3):72-77.
[12] 林君. 电磁探测技术在工程与环境中的应用现状[J]. 物探与化探, 2000, 24(3):167-177.
[12] Lin J. Trend of electromagnetic instrumentation for engineering and environment[J]. Geophysical and Geochemical Exploration, 2000, 24(3):167-177.
[13] Rutley A, Oldenburg D W, Shekhtman R. 2D and 3D IP/resistivity inversion for the interpretation of Isa-style targets[J]. ASEG Extended Abstracts, 2001, 2001(1):1-4.
[14] 何展翔. 电磁勘探技术的机遇与挑战及发展方向[J]. 物探化探计算技术, 2019, 41(4):433-447.
[14] He Z X. Opportunities,challenges and development directions of electromagnetic exploration today[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4):433-447.
[15] 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.
[15] Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysic[J]. Scientia Sinica:Terrae, 2020, 50(3):432-435.
[16] 严良俊, 胡文宝, 陈清礼, 等. 长偏移距瞬变电磁测深法在碳酸盐岩覆盖区落实局部构造的应用效果[J]. 地震地质, 2001, 23(2):271-276.
[16] Yan L J, Hu W B, Chen Q L, et al. Trial with lotem to investigate detailed geologial structure in the area covered with carbonatite[J]. Seismology and Geology, 2001, 23(2):271-276.
[17] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
[17] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1065-1072.
[18] 汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报:地球科学版, 2011, 41(2):552-558.
[18] Tang J T, Zhou C, Zhang L C. A new apparent resistivity of CSAMT defined by electric field y-direction[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(2):552-558.
[19] 陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2):358-361.
[19] Chen W Y, Xue G Q. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2015, 39(2):358-361.
[20] 周聪, 汤井田, 庞成, 等. 时空阵列混场源电磁法理论及模拟研究[J]. 地球物理学报, 2019, 62(10):3827-3842.
doi: 10.6038/cjg2019M0437
[20] Zhou C, Tang J T, Pang C, et al. A theory and simulation study on the space-time array hybrid source electromagnetic method[J]. Chinese Journal of Geophysics, 2019, 62(10):3827-3842.
[21] Wang J L, Lin P R, Wang M, et al. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. Applied Geophysics, 2017, 14(2):291-300.
[22] 何展翔, 董卫斌, 赵国, 等. 时频电磁(TFEM)技术:数据处理[J]. 石油地球物理勘探, 2021, 56(6):1391-1399,1202-120.
[22] He Z X, Dong W G, Zhao G, et al. Time-frequency electromagnetic (TFEM) technology:Data processing[J]. Oil Geophysical Prospecting, 2021, 56(6):1391-1399,1202-120.
[23] Wang M, Wang J L, Lin P R, et al. Three-dimensional resistivity and chargeability tomography with expanding gradient and pole-dipole arrays in a polymetallic mine,China[J]. Remote Sensing, 2024, 16(1):186.
[24] 石福升. 大功率多功能发射系统研究[J]. 地球物理学进展, 2009, 24(3):1109-1114.
[24] Shi F S. A study on high-power multi-function transmitting system[J]. Progress in Geophysics, 2009, 24(3):1109-1114.
[25] 底青云, 雷达, 王中兴, 等. 多通道大功率电法勘探仪集成试验[J]. 地球物理学报, 2016, 59(12):4399-4407.
doi: 10.6038/cjg20161201
[25] Di Q Y, Lei D, Wang Z X, et al. An integrated test of the multi-channel transient electromagnetic system[J]. Chinese Journal of Geophysics, 2016, 59(12):4399-4407.
[26] 赵翔, 钱文圣, 亓庆新. 大功率瞬变电磁发射机的仿真与研制[J]. 中国金属通报, 2021(6):186-188,191.
[26] Zhao X, Qian W S, Qi Q X. Simulation and development of high power transient electromagnetic transmitter[J]. China Metal Bulletin, 2021(6):186-188,191.
[27] Swanson J. Magnetic fields from transmission lines:comparison of calculations and measurements[J]. IEE Proceedings-Generation,Transmission and Distribution, 2002, 142(5) :481-486.
[28] 张凯, 林年添, 聂西坤, 等. 用于深部采空区探测的可控源音频大地电磁法抗强干扰数据采集及处理策略[J]. 地球物理学进展, 2019, 34(5):2119-2127.
[28] Zhang K, Lin N T, Nie X K, et al. Strategies of anti-jamming data acquisition and processing for exploration of deep goaf based on controlled-source audiomagnetotellurics[J]. Progress in Geophysics, 2019, 34(5):2119-2127.
[29] Wang J L, Wang M, Liu W Q, et al. The full-field apparent resistivity of CSAMT defined by the magnetic field y-component and an application to a geological survey in the Xiong'an New Area,China[J]. Bulletin of Geophysics and Oceano graphy, 2021, 63(2):311-324.
[30] Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarisation full waveform data[J]. Exploration Geophysics, 2019, 50(2):113-123.
[31] 李帝铨. E-ExE-Eφ广域电磁法测量范围[J]. 石油地球物理勘探, 2017, 52(6):1315-1323,1124-1125.
[31] Li D Q. Measurement range of E-Ex and E-Eφ wide field elec-tromagnetic methods[J]. Oil Geophysical Prospecting, 2017, 52(6):1315-1323,1124-1125.
[32] Huang H P, Fraser D C. Magnetic permeability and electrical resistivity mapping with a multifrequency airborne EM system[J]. Exploration Geophysics, 1998, 29(1-2):249-253.
[33] 冯兵, 王珺璐, 王玉, 等. 利用CSAMT电磁场响应提取激电效应的方法初探[J]. 地球物理学进展, 2013, 28(4):2116-2122.
[33] Feng B, Wang J L, Wang Y, et al. The preliminary exploration to extract the IP effect which using CSAMT electromagnetic field response method[J]. Progress in Geophysics, 2013, 28(4):2116-2122.
[34] Beard L P, Nyquist J E. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability[J]. Geophysics, 1998, 63(5):1556-1564.
[35] Sasaki Y, Kim J H, Cho S J. Multidimensional inversion of loop-loop frequency-domain EM data for resistivity and magnetic susceptibility[J]. Geophysics, 2010, 75(6):F213-F223.
[36] 何展翔, 吴迪, 吴磊. 我国大功率可控源电磁仪器的现状与发展方向[J]. 物探装备, 2012, 22(6):351-355.
[36] He Z X, Wu D, Wu L. The current situation and developing trend of domestic large power contro source electromagnetic instrument[J]. Equipment for Geophysical Prospecting, 2012, 22(6):351-355.
[37] 底青云, 方广有, 张一鸣. 地面电磁探测系统(SEP)研究[J]. 地球物理学报, 2013, 56(11):3629-3639.
[37] Di Q Y, Fang G Y, Zhang Y M. Research of the surface electromagnetic prospecting(SEP)system[J]. Chinese Journal of Geophysics, 2013, 56(11):3629-3639.
[38] Lei D, Wu X P, Di Q Y, et al. Modeling and analysis of CSAMT field source effect and its characteristics[J]. Journal of Geophysics and Engineering, 2016, 13(1):49.
[39] 郑采君, 刘昕卓, 林品荣, 等. 分布式电磁法仪器系统设计及实现[J]. 地球物理学报, 2019, 62(10):3772-3784.
doi: 10.6038/cjg2019M0432
[39] Zheng C J, Liu X Z, Lin P R, et al. Design and realization of the distributed electromagnetic instrument system[J]. Chinese Journal of Geophysics, 2019, 62(10):3772-3784.
[40] 卓贤军, 陆建勋, 赵国泽, 等. 极低频探地(WEM)工程[J]. 中国工程科学, 2011, 13(9):42-50.
[40] Zhuo X J, Lu J X, Zhao G Z, et al. The extremely low frequency engineering project using WEM for underground exploration[J]. Engineering Sciences, 2011, 13(9):42-50.
[41] Seigel H, Nabighian M, Parasnis D S, et al. The early history of the induced polarization method[J]. The Leading Edge, 2007, 26(3):312-321.
[42] 李建华, 林品荣, 郭鹏. 磁激电方法技术试验研究[J]. 地震地质, 2010, 32(3):492-499.
doi: 10.3969/j.issn.0253-4967.2010.03.016
[42] Li J H, Lin P R, Guo P. A trial study of magnetic induced polarization[J]. Seismology and Geology, 2010, 32(3):492-499.
[43] Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion1[J]. Geophysical Prospecting, 1996, 44(3):499-523.
[44] Santarato G, Ranieri G, Occhi M, et al. Three-dimensional electrical resistivity tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils[J]. Engineering Geology, 2011, 119(1-2):18-30.
[45] White R, Collins S, Loke M. Resistivity and IP arrays,optimised for data collection and inversion[J]. Exploration Geophysics, 2003, 34(4):229-232.
[46] Power C, Tsourlos P, Ramasamy M, et al. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia,Canada[J]. Journal of Applied Geophysics, 2018,150:40-51.
[47] Neyamadpour A, Taib S, Abdullah W A T W. An application of three-dimensional electrical resistivity imaging for the detection of an underground waste-water system[J]. Studia Geophysica et Geodaetica, 2009, 53(3):389-402.
[48] Webb D, Rowston P, McNeill G. A Comparison of 2D and 3D IP from Copper Hill NSW[C]// In Proceedings of the ASEG 16th Geophysical Conference and Exhibition, 2000.
[49] Sun J J, Li Y G, Nabighian M. Lithology differentiation based on inversion of full waveform induced polarization data from Newmont Distributed IP Data Acquisition System (NEWDAS)[C]// In Proceedings of the SEG International Exposition and Annual Meeting, 2010.
[50] Paine J, Copeland A. Reduction of noise in induced polarization data using full time-series data[J]. Exploration Geophysics, 2000, 34(4):225-228.
[51] 刘卫强, 吕庆田, 林品荣, 等. 多周期全波形激电抗干扰数据处理方法及在大规模探测中的应用分析[J]. 地球物理学报, 2019, 62(10):3934-3949.
doi: 10.6038/cjg2019M0418
[51] Liu W Q, Lu Q T, Lin P R, et al. Anti-interference processing of multi-period full-waveform induced polarization data and its application to large-scale exploration[J]. Chinese Journal of Geophysics, 2019, 62(10):3934-3949.
[52] Lei D, Di Q Y, Wu J J, et al. Anti-interference test for the new SEP instrument:CSAMT study at Dongguashan copper mine,China[J]. Journal of Environmental and Engineering Geophysics, 2017, 22(4):339-352.
[53] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6):1207-1211.
[53] Huang G Y, Zhang G H. The comparative test between tensor measurement and scalar measurement of the CSAMT method in two known iron ore districts[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1207-1211.
[54] 张振宇, 王刚, 胡祥云, 等. 张量CSAMT方法及对比实验[J]. 石油地球物理勘探, 2017, 52(4):869-874,630.
[54] Zhang Z Y, Wang G, Hu X Y, et al. Tensor CSAMT technical research and experiments[J]. Oil Geophysical Prospecting, 2017, 52(4):869-874,630.
[55] 雷达, 张国鸿, 黄高元, 等. 张量可控源音频大地电磁法的应用实例[J]. 工程地球物理学报, 2014, 11(3):286-294.
[55] Lei D, Zhang G H, Huang G Y, et al. The application of tensor CSAMT method[J]. Chinese Journal of Engineering Geophysics, 2014, 11(3):286-294.
[56] 王显祥, 底青云, 许诚. CSAMT的多偶极子源特征与张量测量[J]. 地球物理学报, 2014, 57(2):651-661.
[56] Wang X X, Di Q Y, Xu C. Characteristics of multiple sources and tensor measurement in CSAMT[J]. Chinese Journal of Geophysics, 2014, 57(2):651-661.
[57] Yu P L, Qu T, He R Z, et al. Application of tensor CSAMT with high-power orthogonal signal sources in Jiama porphyry copper deposit,South Tibet[J]. China Geology, 2023, 6(1):37-49.
[58] 林昌洪, 谭捍东, 舒晴, 等. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报, 2012, 55(11):3829-3838.
[58] Lin C H, Tan H D, Shu Q, et al. Three-dimensional conjugate gradient inversion of CSAMT data[J]. Chinese Journal of Geophysics, 2012, 55(11):3829-3838.
[59] 翁爱华, 刘云鹤, 贾定宇, 等. 地面可控源频率测深三维非线性共轭梯度反演[J]. 地球物理学报, 2012, 55(10):3506-3515.
[59] Weng A H, Liu Y H, Jia D Y, et al. Three-dimensional controlled source electromagnetic inversion using non-linear conjugate gradients[J]. Chinese Journal of Geophysics, 2012, 55(10):3506-3515.
[60] 王涛, 王堃鹏, 谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. Applied Geophysics, 2017, 14(4):590-605,6.
[60] Wang T, Wang H P, Tan H D. Research on tensor CSAMT forward modeling and inversion in three-dimensional principal axis anisotropic media[J]. Applied Geophysics, 2017, 14(4):590-605,6.
[61] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):985-990.
[61] He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):985-990.
[62] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5):1059-1065.
[62] Wang Y B, Yin W B, Zhang L. A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1059-1065.
[63] 陈小斌, 赵国泽. 关于人工源极低频电磁波发射源的讨论——均匀空间交流点电流源的解[J]. 地球物理学报, 2009, 52(8):2158-2164.
[63] Chen X B, Zhao G Z. Study on the transmitting mechanism of CSELF waves:Response of the alternating current point source in the uniform space[J]. Chinese Journal of Geophysics, 2009, 52(8):2158-2164.
[64] 底青云, 王妙月, 王若, 等. 长偶极大功率可控源电磁波响应特征研究[J]. 地球物理学报, 2008, 51(6):1917-1928.
[64] Di Q Y, Wang M Y, Wang R, et al. Study of the long bipole and large power electromagnetic field[J]. Chinese Journal of Geophysics, 2008, 51(6):1917-1928.
[65] Wang R, Wang M Y, Di Q Y, et al. 2D numerical study on the effect of conductor between the transmitter and survey area in CSEM exploration[J]. Applied Geophysics, 2009, 6(4):311-318.
[66] 林君, 张扬, 张思远, 等. 强电磁干扰下磁共振地下水探测噪声压制方法研究进展[J]. 吉林大学学报:地球科学版, 2016, 46(4):1221-1230.
[66] Lin J, Zhang Y, Zhang S Y, et al. Progress of magnetic resonance sounding for groundwater investigation under high-level electromagnetic interference[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(4):1221-1230.
[67] 柳建新, 佟铁钢, 刘春明, 等. E-Eφ广域视电阻率定义的改进方法及场特性识别[J]. 中国有色金属学报, 2013, 23(9):2359-2364.
[67] Liu J X, Tong T G, Liu C M, et al. Recognition of electromagnetic field asymptotic properties and improved definition of wide field apparent resistivity on E-Eφ array[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9):2359-2364.
[68] 雷达, 底青云, 杨良勇, 等. 极低频电磁法在超深层油气探测中的应用——以川中油田为例[C]// 2019年中国地球科学联合学术年会, 2019.
[68] Lei D, Di Q Y, Yang L Y, et al. Application of extremely low frequency electromagnetic method in Ultra-deep oil and gas exploration:A case study of central sichuan oilfield[C]// 2019 Chinese Geoscience Union (CGU) Annual Meeting, 2019.
[1] 康利利, 杨永友, 王中兴, 陈凯, 何朋, 王绪哲, 丁古巧, 李子航. 石墨烯基电场传感器研发与测试[J]. 物探与化探, 2024, 48(6): 1463-1470.
[2] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[3] 李晓利, 张宝林, 郭志华, 赵连锋, 肖骑彬, 张丽莉, 海连富, 李刚. 黄土覆盖区金矿深部地质结构大地电磁探测——以河北怀来颜家沟金矿为例[J]. 物探与化探, 2014, 38(6): 1124-1128.
[4] 卓贤军, 底青云, 张佳炜. 谐波信号在人工源电磁法WEM中的应用[J]. 物探与化探, 2013, 37(5): 830-833,838.
[5] 李勇, 林品荣, 郑采君, 石福升, 徐宝利, 郭鹏. 极低频电磁波技术电磁响应建模及电离层影响分析[J]. 物探与化探, 2010, 34(3): 332-339.
[6] 林君. 电磁探测技术在工程与环境中的应用现状[J]. 物探与化探, 2000, 24(3): 167-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com