Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1018-1024    DOI: 10.11720/wtyht.2024.1377
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
DGS-AT1M型海洋重力仪静态观测结果分析与评估
张彬彬1(), 万丽丽2
1.自然资源部第一海洋研究所,山东 青岛 266061
2.天元建设集团有限公司,山东 临沂 276002
Analysis and assessment of static measurement results from a DGS-AT1M marine gravimeter
ZHANG Bin-Bin1(), WAN Li-Li2
1. First Institute of Oceanography, MNR, Qingdao 266061, China
2. Tianyuan Construction Group Co., Ltd., Linyi 276002, China
全文: PDF(2437 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

海洋重力仪的性能直接决定测量数据的质量,而海洋重力仪稳定性则是反映仪器性能的关键性指标。本文结合DGS-AT1M型海洋重力仪静态试验,分析了静态试验过程中影响观测结果的主要因素,研讨了海洋重力仪静态试验稳定性评估方法及流程,对该型海洋重力仪稳定性进行了分析与评估。首先,计算了理论固体潮重力值变化,改正了固体潮对静态观测结果的影响;然后,对单日观测数据以及整体数据进行分析;最后,根据稳定性评估流程,利用固体潮改正后的剩余观测值计算了仪器的零漂率、月漂以及准确度。计算表明,该型重力仪试验月漂值为-1.020 mGal,零漂线性良好且漂移率为-0.034 mGal/day,设备的测量准确度为0.085 mGal,符合重力测量的规范要求,可用于高精度海洋重力测量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彬彬
万丽丽
关键词 DGS-AT1M型海洋重力仪静态观测固体潮稳定性零点漂移测量准确度    
Abstract

The performance of marine gravimeters directly determines the quality of measured data, while their stability serves as a critical indicator reflecting their performance. Based on the static test conducted using a DGS-AT1M marine gravimeter, this study analyzed the dominant factors affecting the measured results in the static test. It explored the method and process for stability assessment in the static test, analyzing and assessing the stability of this marine gravimeter.First, this study calculated the changes in the theoretical gravity value of earth tide, correcting the earth tide effect on static measurement results. Then, this study analyzed the single-day data and the overall data. Finally, based on the stability assessment process, this study calculated the zero-drift rate, monthly drift, and accuracy of the marine gravimeter using the residual measured values after earth tide correction. The calculation results show that this marine gravimeter yielded a monthly drift value of -1.020 mGal, and high zero drift linearity at a drift rate of -0.034 mGal/day. This marine gravimeter exhibited a measurement accuracy of 0.085 mGal, aligning with the gravity survey specifications.Therefore, it can be applied to high-precision marine gravity surveys.

Key wordsDGS-AT1M marine gravimeter    static measurement    earth tide    stability    zero drift    measurement accuracy
收稿日期: 2023-09-05      修回日期: 2023-12-12      出版日期: 2024-08-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(42249902)
作者简介: 张彬彬(1990-),男,工程师,主要从事海洋调查技术应用与研究工作。Email:zhangbinbin@fio.org.cn
引用本文:   
张彬彬, 万丽丽. DGS-AT1M型海洋重力仪静态观测结果分析与评估[J]. 物探与化探, 2024, 48(4): 1018-1024.
ZHANG Bin-Bin, WAN Li-Li. Analysis and assessment of static measurement results from a DGS-AT1M marine gravimeter. Geophysical and Geochemical Exploration, 2024, 48(4): 1018-1024.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1377      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1018
Fig.1  DGS-AT1M型海洋重力仪静态试验结果
Fig.2  理论固体潮计算值与重力仪静态观测
Fig.3  单日静态观测、理论固体潮及改正数据
Fig.4  静态观测数据稳定性评估
[1] 黄谟涛, 翟国君, 管铮, 等. 海洋重力场测定及其应用[M]. 北京: 测绘出版社, 2005.
[1] Huang M T, Zhai G J, Guan Z, et al. The mensuration of marine gravity and its application[M], Beijing: Surveying and Mapping Press, 2005.
[2] 宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3):67-72,76.
[2] Ning J S, Huang M T, Ouyang Y Z, et al. Development of marine and airborne gravity measurement technologies[J]. Hydrographic Surveying and Charting, 2014, 34(3):67-72,76.
[3] 张菲菲, 孙建伟, 韩波, 等. SAG-2M型与KSS31M型海洋重力仪比测结果分析[J]. 物探与化探, 2020, 44(4):870-877.
[3] Zhang F F, Sun J W, Han B, et al. The result analysis of the comparison between SAG-2M and KSS31M marine gravimeter[J]. Geophysical and Geochemical Exploration, 2020, 44(4):870-877.
[4] 栾锡武. KSS31M型海洋重力仪在动、静态条件下观测到的读数变化及分析[J]. 地球物理学进展, 2004, 19(2):442-448.
[4] Luan X W. The fixed points gravity data measurement used by KSS31M and data analysis[J]. Progress in Geophysics, 2004, 19(2):442-448.
[5] 顾兆峰, 张志珣, 杨慧良, 等. KSS 31M海洋重力仪静态观测结果及分析[J]. 海洋测绘, 2005, 25(2):66-68.
[5] Gu Z F, Zhang Z X, Yang H L, et al. The static measurement result of KSS31M marine gravimeter and its analysis[J]. Hydrographic Surveying and Charting, 2005, 25(2):66-68.
[6] 付永涛, 王先超, 谢天峰. KSS31M型海洋重力仪在海边静态观测的结果——兼与栾锡武先生商榷[J]. 地球物理学进展, 2007, 22(1):308-311.
[6] Fu Y T, Wang X C, Xie T F. The static measurement of KSS31M marine gravity meter at coast[J]. Progress in Geophysics, 2007, 22(1):308-311.
[7] 陆凯, 苏达理, 张志珣, 等. System Ⅱ型海洋重力仪静态观测结果与分析[J]. 海洋测绘, 2014, 34(4):31-34.
[7] Lu K, Su D L, Zhang Z X, et al. Static measurement result of Micro-g Lacoste air and sea System Ⅱ marine gravimeter and its analysis[J]. Hydrographic Surveying and Charting, 2014, 34(4):31-34.
[8] 刘站科, 李建成, 肖学年, 等. GT-2A航空重力仪静态测量实验及性能分析[J]. 武汉大学学报:信息科学版, 2019, 44(4):482-488.
[8] Liu Z K, Li J C, Xiao X N, et al. Static measurement experiment and performance analysis of GT-2A airborne gravimeter[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4):482-488.
[9] 黄谟涛, 刘敏, 孙岚, 等. 海洋重力仪稳定性测试与零点漂移问题[J]. 海洋测绘, 2014, 34(6):1-7.
[9] Huang M T, Liu M, Sun L, et al. Test and evaluation of the stability for marine gravimeter and its zero drift[J]. Hydrographic Surveying and Charting, 2014, 34(6):1-7.
[10] 张登, 袁园, 陶春辉, 等. DGS AT1M-3海洋重力仪的应用及精度评估[J]. 海洋测绘, 2020, 40(3):68-72.
[10] Zhang D, Yuan Y, Tao C H, et al. Application and accuracy evaluation of DGS AT1M-3 marine gravimeter[J]. Hydrographic Surveying and Charting, 2020, 40(3):68-72.
[11] Zhang W, Shi X W, Xiao C Q, et al. Discussion on the delay time of DGS AT1M marine gravimeter[C]// IOP Conference Series: Materials Science and Engineering.IOP Publishing, 2020, 782(4):042006.
[12] 廖开训, 徐行. KSS31海洋重力仪的长期零点漂移特征[J]. 海洋测绘, 2015, 35(3):32-35.
[12] Liao K X, Xu X. Long term zero drift characteristics of KSS31 marine gravimeter[J]. Hydrographic Surveying and Charting, 2015, 35(3):32-35.
[13] 田桂娥, 陈晓东, 吴书清, 等. FG5绝对重力仪观测数据的实测重力潮汐改正[J]. 武汉大学学报:信息科学版, 2020, 45(6):870-878.
[13] Tian G E, Chen X D, Wu S Q, et al. Correction of measured gravity tides with FG5 absolute gravimeter observations[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6):870-878.
[14] 史謌. 地球物理学基础[M]. 北京: 北京大学出版社, 2002.
[14] Shi G. Fundamentals of geophysics[M]. Beijing: Peking University Press, 2002.
[15] 董良, 彭芳苹, 杨涛, 等. 利用新参数和软件改进重力固体潮计算程序[J]. 地球物理学进展, 2015, 30(1):421-424.
[15] Dong L, Peng F P, Yang T, et al. To improve the earthtide calculating program by new parameters within software[J]. Progress in Geophysics, 2015, 30(1):421-424.
[16] 张燕, 王正科, 兰学毅, 等. DZ/T 0004-2015,重力调查技术规范(1:50 000)[S]. 中华人民共和国国土资源部, 2015-07-01.
[16] Zhang Y, Wang Z K, Lan X Y, et al. DZ/T 0004-2015,The technical specification for gravity survey(1:50 000)[S]. Ministry of Land and Resources of the People's Republic of China,2015-07-01.
[17] 黄谟涛, 陆秀平, 欧阳永忠, 等. 海空重力测量技术体系构建与研究若干进展(一):需求论证设计与仪器性能评估技术[J]. 海洋测绘, 2018, 38(4):11-15.
[17] Huang M T, Lu X P, Ouyang Y Z, et al. Progress in development and study of technical system of marine and airborne gravity surveys,part I: Requirement investigation,survey design and evaluation of instrument performance[J]. Hydrographic Surveying and Charting, 2018, 38(4):11-15.
[18] Ander M E, Summers T, Gruchalla M E. LaCoste & Romberg gravity meter: System analysis and instrumental errors[J]. Geophysics, 1999, 64(6):1708-1719.
[19] 黄谟涛, 刘敏, 吴太旗, 等. 海空重力测量关键技术指标体系论证与评估[J]. 测绘学报, 2018, 47(11):1537-1548.
doi: 10.11947/j.AGCS.2018.20170617
[19] Huang M T, Liu M, Wu T Q, et al. Research and evaluation on key technological target system for marine and airborne gravity surveys[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1537-1548.
doi: 10.11947/j.AGCS.2018.20170617
[20] 李家彪, 柯长志, 康寿岭, 等. GB/T 12763.8-2007,海洋调查规范第8部分:海洋地质与地球物理调查[S]. 中华人民共和国国家质量监督检疫总局,中国国家标准化管理委员会, 2007-08-13
[20] Li J B, Ke C Z, Kang S L, et al. GB/T 12763.8-2007,Specification for oceanographic survey-Part8: Marine geology and geophysics survey[S]. General Administration of Quality Supervision,Inspection and Qurantine of the People's Republic of China,Standardization Administration of the People’s Republic of China, 2007-08-13.
[1] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[2] 王万银, 罗新刚. 重磁场二度体边缘深度反演研究进展[J]. 物探与化探, 2023, 47(3): 547-562.
[3] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[4] 陈晓晶, 虎新军, 李宁生, 安百州, 白亚东. 银川平原基于地球物理资料三维建模的深部地质构造研究[J]. 物探与化探, 2020, 44(2): 245-253.
[5] 刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328.
[6] 何涛, 王万银, 黄金明, 张明华, 杨敏. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2): 308-319.
[7] 黄杰, 杨国权, 李振春, 谷丙洛. TTI介质拟声波方程数值模拟[J]. 物探与化探, 2018, 42(1): 134-143.
[8] 屈进红, 郭素然, 周锡华, 姜作喜, 刘乾坤. 相关性分析在GT航空重力仪零漂改正中的应用[J]. 物探与化探, 2016, 40(4): 838-842.
[9] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1): 143-147.
[10] 王小丹, 印兴耀, 杨富森. 稳定的二维TTI介质一阶qP波方程RSGFD数值模拟[J]. 物探与化探, 2016, 40(1): 135-142.
[11] 张伟, 甘伏平, 刘伟, 郑智杰. 双相介质瑞雷面波有限差分正演模拟[J]. 物探与化探, 2014, 38(6): 1275-1283.
[12] 郭伟立, 薛国强, 周楠楠, 肖宏跃. 利用瞬变电磁法监测煤矿含水采空区[J]. 物探与化探, 2012, 36(S1): 114-118.
[13] 刘妹, 顾铁新, 史长义, 鄢卫东, 鄢明才. 我国主要土壤类型元素地球化学形态成分标准物质研制[J]. 物探与化探, 2008, 32(5): 492-496,508.
[14] 解华明, 丁华. PLS法与隧道围岩稳定性分类[J]. 物探与化探, 2003, 27(4): 320-322.
[15] 孙秀容, 刘志高, 许东儿, 戴纯俊. 上海市区区域工程场地剪切波地震稳定性评价[J]. 物探与化探, 2002, 26(5): 398-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com