Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 547-562    DOI: 10.11720/wtyht.2023.1464
  “2022年重磁方法理论及应用研究专题研讨会”专栏 本期目录 | 过刊浏览 | 高级检索 |
重磁场二度体边缘深度反演研究进展
王万银1,2,3,4(), 罗新刚1,2,3,4,5()
1.长安大学 重磁方法技术研究所,陕西 西安 710054
2.长安大学 地质工程与测绘学院,陕西 西安 710054
3.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054
4.海洋油气勘探国家工程研究中心,北京 100028
5.Department of Earth Sciences, Memorial University of Newfoundland, Newfoundland A1B3X5
Research on edge depth inversion of 2D geological body based on gravity and magnetic field
WANG Wan-Yin1,2,3,4(), LUO Xin-Gang1,2,3,4,5()
1. Institute of Gravity and Magnetic Technology, Chang'an University, Xi'an 710054, China
2. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
3. Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an 710054, China
4. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China
5. Department of Earth Sciences, Memorial University of Newfoundland, Newfoundland A1B3X5, Canada
全文: PDF(8058 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地质体边缘深度对重磁位场勘探半定量解释起着至关重要的作用。目前主要的地质体边缘深度反演方法有沃纳(Werner)反褶积法、解析信号振幅法(ASA)、局部波数法(local wave-number)、Tilt-depth法、欧拉(Euler)反褶积法和曲率属性(curvature attributes)反演法。这几类方法都存在解的筛选问题、稳定性问题和适应性问题。本文主要对不同类型数据和模型的适应性问题进行研究,基本原理分析和模型试算结果表明:沃纳反褶积方法和欧拉反褶积方法适用的数据源类型最多,曲率属性适用的数据源类型次之,Tilt-depth最少;沃纳反褶积方法、欧拉反褶积方法和曲率属性方法能够适应较多的模型,Tilt-depth能够适应的模型最少。对于重力数据,垂向一阶导数的解析信号振幅作为数据源适用于所有方法。对于磁力数据,解析信号振幅作为数据源适用于所有方法。同时,建议其他学者在使用这些方法反演二度体边缘深度时,遵循以下原则:反演方法推荐优先使用沃纳反褶积,其次是曲率属性和欧拉反褶积。沃纳反褶积方法和欧拉反褶积方法的重力数据源推荐使用垂向一阶导数的水平导数,磁力数据源推荐使用水平导数。曲率属性方法的重力数据源推荐使用垂向一阶导数的解析信号振幅,磁力数据源推荐使用解析信号振幅。另外,基于以上的研究结论,对边缘深度反演中解的筛选问题、稳定性问题和适应性问题在未来的研究方向中给出了一些建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王万银
罗新刚
关键词 二度体边缘深度解的筛选稳定性适应性    
Abstract

The edge depth of geological body plays a crucial role in the semi-quantitative interpretation of gravity and magnetic potential field exploration. At present, the main inversion methods of geological body edge depth mainly include Werner deconvolution method, analytical signal amplitude method, local wave number method, Tilt-depth method, Euler deconvolution method and curvature attribute inversion method. These methods all have problems of solution selection, stability and adaptability. This paper mainly studies the adaptability of different types of data and models. Through basic principle analysis and model test, the results show that Werner deconvolution method and Euler deconvolution method are applicable to the most types of data sources, followed by curvature attribute, and Tilt-depth is the least; Werner deconvolution method, Euler deconvolution method and curvature attribute methods can adapt to many models, the Tilt-depth is least. For gravity data, the analytical signal amplitude of the first vertical derivative as the data source is applicable to all methods. For magnetic data, the analytical signal amplitude as data source is applicable to all methods. At the same time, it is suggested that other scholars should follow the following principles when using these methods to invert the edge depth of the two-dimensional body: It is recommended that Werner deconvolution is preferred, followed by curvature attribute and Euler deconvolution. The gravity data source of Werner deconvolution method and Euler deconvolution method is recommended to use the horizontal derivative of the first vertical derivative, and the magnetic data source is recommended to use the horizontal derivative. The gravity data source of curvature attribute method is recommended to use the analytical signal amplitude of the first vertical derivative, and the magnetic data source is recommended to use the analytical signal amplitude. In addition, based on the above research conclusions, some suggestions on the future research directions of the solution screening, stability and adaptability of the edge depth inversion are given.

Key wordstwo-dimensional body    edge depth    solution selection    stability    adaptability
收稿日期: 2022-09-21      修回日期: 2023-03-22      出版日期: 2023-06-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目“航空地球物理综合处理解释方法研究及软件开发”(2017YFC0602202);中央高校基本科研业务费专项资金——长安大学优秀博士学位论文培育资助项目
通讯作者: 罗新刚(1991-),男,博士研究生,研究方向为重、磁方法理论及应用。Email:lxg_chd@163.com
作者简介: 王万银(1962-),男,博士,教授,博士生导师,主要从事重、磁位场理论及应用研究和教学工作。Email:wwy7902@chd.edu.cn
引用本文:   
王万银, 罗新刚. 重磁场二度体边缘深度反演研究进展[J]. 物探与化探, 2023, 47(3): 547-562.
WANG Wan-Yin, LUO Xin-Gang. Research on edge depth inversion of 2D geological body based on gravity and magnetic field. Geophysical and Geochemical Exploration, 2023, 47(3): 547-562.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1464      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/547
Fig.1  倾斜台阶示意
输入数据类型
重力 VDR-HDR VDR-VDR VDR-ASA2 VDR-k
磁力 HDR VDR ASA2 k
Table 1  沃纳反褶积方法的输入数据类型
Fig.2  水平圆柱体示意
输入数据类型
重力 VDR-HDR VDR-VDR VDR-ASA VDR-k
磁力 HDR VDR ASA k
Table 2  欧拉反褶积方法的输入数据类型
Fig.3  沃纳反褶积反演倾斜台阶边缘深度
a—磁力异常;b—重力异常
Fig.4  倾斜台阶厚度和顶面埋深比值与误差百分比关系
Fig.5  Tilt-depth方法反演倾斜台阶边缘深度
a—磁力异常;b—重力异常
Fig.6  欧拉反褶积方法反演倾斜台阶边缘深度
a—磁力异常;b—重力异常
Fig.7  曲率属性方法反演倾斜台阶边缘深度
a—磁力异常;b—重力异常
Fig.8  含噪声的倾斜台阶磁异常反演结果
a—未做滤波处理;b—滤波处理
Fig.9  沃纳反褶积类方法反演平行四边形边缘深度
a—磁力异常;b—重力异常
Fig.10  Tilt-depth方法反演平行四边形边缘深度
a—磁力异常;b—重力异常
Fig.11  欧拉反褶积方法反演平行四边形边缘深度
a—磁力异常;b—重力异常
Fig.12  曲率属性方法反演平行四边形边缘深度
a—磁力异常;b—重力异常
Fig.13  变宽度平行四边形边缘深度反演结果
a—平行四边形宽度:-500~500 m;b—平行四边形宽度:-300~300 m;c—平行四边形宽度:-100~100 m;d—平行四边形宽度:-50~50 m
Fig.14  珠江口盆地化极磁力异常
a—平面;b—剖面
Fig.15  珠江口盆地卫星测高重力异常
a—平面;b—剖面
Fig.16  珠江口盆地边缘深度反演结果
a—磁力异常;b—重力异常
反演深度/km
反演方法 第1个构造边缘 第2个构造边缘 第3个构造边缘 第4个构造边缘
磁剖面 重力剖面 磁剖面 重力剖面 磁剖面 重力剖面 磁剖面 重力剖面
沃纳反褶积 6.3 2.5 5.8 4.9 10.5 13.2 11.5 13.8
曲率属性 7.2 4.5 6.1 5.9 12.3 14.1 11.5 15.9
欧拉反褶积 2.7 9.6 0.4 0.6 9.7 3.3 5.1 16.5
Tilt-depth 11.5 11.3 12.1 17.9 35.5 22.7 14.8
Table 3  珠江口盆地重、磁力异常剖面边缘深度反演结果
[39] 鲁宝亮, 王万银, 赵志刚, 等. 南海深部构造特征及其地质意义:来自重磁位场反演的认识[J]. 地球物理学报, 2018, 61(10):4231-4241.
[39] Lu B L, Wang W Y, Zhao Z G, et al. Characteristics of deep structure in the South China Sea and geological implications:Insights from gravity and magnetic inversion[J]. Chinese Journal of Geophysics, 2018, 61(10):4231-4241.
[1] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.
doi: 10.1190/1.1635049
[2] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using Tilt-angle derivatives[J]. Geophysics, 2008, 73(1):1-10.
[3] Werner S. Interpretation of magnetic anomalies at sheet-like bodies[R]. Sveriges Geologiska Undersok.Ser.C,Arsbok 1953.
[4] Hartman R R, Teskey D J, Friedberg J L. A system for rapid digital aeromagnetic interpretation[J]. Geophysics, 1971, 36(5):891-918.
doi: 10.1190/1.1440223
[5] Hansen R O, Simmonds M. Multiple-source Werner deconvolution[J]. Geophysics, 1993, 58(12):1792-1800.
doi: 10.1190/1.1443394
[6] Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section its properties and use for automated anomaly interpretation[J]. Geophysics, 1972, 37(3):507-517.
doi: 10.1190/1.1440276
[7] Roest W R, Verhoef J, Pilkingto M. Magnetic interpretation using the 3D analytic signal[J]. Geophysics, 1992, 57(1):116-125.
doi: 10.1190/1.1443174
[8] 胡中栋, 余钦范, 楼海. 三维解析信号法[J]. 物探化探计算技术, 1995, 17(3):36-42.
[8] Hu Z D, Yu Q F, Lou H. 3D analytic signal method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1995, 17(3):36-42.
[9] Hsu S K, Sibuet J C, Shyu C T. High-resolution detection of geologic boundaries from potential-field anomalies:An enhanced analytic signal technique[J]. Geophysics, 1996, 61(2):373-386.
doi: 10.1190/1.1443966
[10] 管志宁, 姚长利. 倾斜板体磁异常总梯度模反演方法[J]. 地球科学:中国地质大学学报, 1997, 22(1):81-85.
[10] Guan Z N, Yao C L. Inversion of the total gradient modulus of magnetic anomaly due to dipping dike[J]. Earth Science:Journal of China University of Geosciences, 1997, 22(1):81-85.
[11] Debeglia N, Corpel J. Automatic 3D interpretation of potential field data using analytic signal derivatives[J]. Geophysics, 1997, 62(1):87-96.
doi: 10.1190/1.1444149
[12] Bastani M, Pedersen L B. Automatic interpretation of magnetic dike parameters using the analytical signal technique[J]. Geophysics, 2001, 66(2):551-561.
doi: 10.1190/1.1444946
[13] 张季生, 高锐, 李秋生, 等. 欧拉反褶积与解析信号相结合的位场反演方法[J]. 地球物理学报, 2011, 54(6):1634-1641.
[13] Zhang J S. Gao R, Li Q S, et al. A combined Euler and analytic signal method for an inversion calculation of potential data[J]. Chinese Journal of Geophysics, 2011, 54(6):1634-1641
[14] Thurston J B, Smith R S. Automatic conversion of magnetic data to depth,dip,and susceptibility contrast using the SPI (TM) method[J]. Geophysics, 1997, 62(3):807-813.
doi: 10.1190/1.1444190
[15] Phillips J D. Locating magnetic contacts:A comparison of the horizontal gradient,analytic signal,and local wavenumber methods[J]. Seg Technical Program Expanded Abstracts, 2000, 19(1):2484.
[16] Pilkington M, Keating P. Contact mapping from gridded magnetic data—A comparison of techniques[J]. Exploration Geophysics, 2004, 35(4):306-311.
doi: 10.1071/EG04306
[17] 崔莉, 王万银. 局部波数在磁异常解释应用中的方法技术[J]. 物探与化探, 2011, 35(6):780-784.
[17] Cui L, Wang W Y. The technique for application of local wavenumber to magnetic interpretation[J]. Geophysical and Geochemical Exploration, 2011, 35(6):780-784.
[18] Miller H G, Singh V. Potential field tilt—A new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994, 32(2):213-217.
doi: 10.1016/0926-9851(94)90022-1
[19] Verduzco B, Fairhead J D, Green C M, et al. The meter reader-New insights into magnetic derivatives for structural mapping[J]. Leading Edge, 2004, 23(2):116-119.
doi: 10.1190/1.1651454
[20] Salem A, Williams S, Fairhead J D, et al. Tilt-depth method:A simple depth estimation method using first-order magnetic derivatives[J]. Leading Edge, 2007, 26(12):1502-1505.
doi: 10.1190/1.2821934
[21] Thompson D T. Euldph—A new technique for making depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.
doi: 10.1190/1.1441278
[22] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.
doi: 10.1190/1.1442774
[23] Marson I, Klingele E E. Advantages of using the vertical gradient of gravity for 3D interpretation[J]. Geophysics, 1993, 58(11):1588-1595.
doi: 10.1190/1.1443374
[24] Keating P B. Weighted Euler deconvolution of gravity data[J]. Geophysics, 1998, 63(5)1595-1603.
doi: 10.1190/1.1444456
[25] Mushayandebvu M F, Driel P V, Reid A B, et al. Magnetic source parameters of two-dimensional structures using extended Euler deconvolution[J]. Geophysics, 2001, 66(3):814-823.
doi: 10.1190/1.1444971
[26] 史辉, 刘天佑, Ghaboush D M. 利用欧拉反褶积法估计二度磁性体深度与位置[J]. 物探与化探, 2005, 29(3):230-233.
[26] Shi H, Liu T Y, Ghaboush D M. The application of Euler deconvolution to estimating depth and location of the 2D magnetic body[J]. Geophysical and Geochemical Exploration, 2005, 29(3):230-233.
[27] Florio G, Fedi M, Pasteka R. On the application of Euler deconvolution to the analytic signal[J]. Geophysics, 2006, 71(6):L87-L93.
doi: 10.1190/1.2360204
[28] 鲁宝亮, 范美宁, 张原庆. 欧拉反褶积中构造指数的计算与优化选取[J]. 地球物理学进展, 2009, 24(3):1027-1031.
[28] Lu B L, Fan M N, Zhang Y Q. The calculation and optimization of structure index in Euler deconvolution[J]. Progress in Geophysics, 2009, 24(3):1027-1031.
[29] Hansen R O, Deridder E. Linear feature analysis for aeromagnetic data[J]. Geophysics, 2006, 71(6):L61-L67.
doi: 10.1190/1.2357831
[30] Phillips J D, Hansen R O, Blakely R J. The use of curvature in potential-field interpretation[J]. Exploration Geophysics, 2007, 38(2):111-119.
doi: 10.1071/EG07014
[31] 刘金兰. 重磁位场新技术与山西断陷盆地构造识别划分研究[M]. 西安: 长安大学, 2008.
[31] Liu J L. Development new technologies for potential field processing and research on the tectonic recognition division of Shanxi fault basin[D]. Xi'an: Chang'an University, 2008.
[32] Roberts A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break, 2001, 19(2):85-100.
doi: 10.1046/j.0263-5046.2001.00142.x
[33] 王万银. 位场边缘识别方法技术研究[D]. 西安: 长安大学, 2009.
[33] Wang W Y. The research on the edge recognition methods and techniques for potential field[D]. Xi'an: Chang'an University, 2009.
[34] 范美宁. 欧拉反褶积方法的研究及应用[D]. 长春: 吉林大学, 2006.
[34] Fan M N. The study and application of Euler deconvolution method[D]. Changchun: Jilin University, 2006.
[35] Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 6(3):226-233.
doi: 10.1007/s11770-009-0026-x
[36] 何涛, 王万银, 黄金明, 等. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2):308-319.
[36] He T, Wang W Y, Huang J M, et al. The research of the regularization method in the ratio methods of edge recognition by potential field[J]. Geophysical and Geochemical Exploration, 2019, 43(2):308-319.
[37] Zhu Y J, Wang W Y, Farquharson C G, et al. Normalized vertical derivatives in the edge enhancement of maximum-edge-recognition methods in potential fields[J]. Geophysics, 2021, 86(4):G23-G34.
doi: 10.1190/geo2020-0165.1
[38] 罗新刚, 王万银, 张功成, 等. 基于重力资料的南海及邻区断裂分布特征研究[J]. 地球物理学报, 2018, 61(10):4255-4268.
[38] Luo X G, Wang W Y, Zhang G C, et al. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas[J]. Chinese J.Geophys., 2018, 61(10):4255-4268.
[1] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[2] 陈晓晶, 虎新军, 李宁生, 安百州, 白亚东. 银川平原基于地球物理资料三维建模的深部地质构造研究[J]. 物探与化探, 2020, 44(2): 245-253.
[3] 刘芬, 王万银, 纪晓琳. 空间域和频率域平面位场延拓影响因素和稳定性分析[J]. 物探与化探, 2019, 43(2): 320-328.
[4] 何涛, 王万银, 黄金明, 张明华, 杨敏. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 43(2): 308-319.
[5] 黄杰, 杨国权, 李振春, 谷丙洛. TTI介质拟声波方程数值模拟[J]. 物探与化探, 2018, 42(1): 134-143.
[6] 匡星涛, 吴健生, 杨海, 郑广如, 朱晓颖. 起伏地形条件下的磁异常二维聚焦反演及应用[J]. 物探与化探, 2016, 40(4): 788-797.
[7] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1): 143-147.
[8] 王小丹, 印兴耀, 杨富森. 稳定的二维TTI介质一阶qP波方程RSGFD数值模拟[J]. 物探与化探, 2016, 40(1): 135-142.
[9] 张伟, 甘伏平, 刘伟, 郑智杰. 双相介质瑞雷面波有限差分正演模拟[J]. 物探与化探, 2014, 38(6): 1275-1283.
[10] 郭伟立, 薛国强, 周楠楠, 肖宏跃. 利用瞬变电磁法监测煤矿含水采空区[J]. 物探与化探, 2012, 36(S1): 114-118.
[11] 朱自强, 曾思红, 鲁光银, 严文婕. 二度体的重力张量有限元正演模拟[J]. 物探与化探, 2010, 34(5): 668-671.
[12] 刘妹, 顾铁新, 史长义, 鄢卫东, 鄢明才. 我国主要土壤类型元素地球化学形态成分标准物质研制[J]. 物探与化探, 2008, 32(5): 492-496,508.
[13] 解华明, 丁华. PLS法与隧道围岩稳定性分类[J]. 物探与化探, 2003, 27(4): 320-322.
[14] 安玉林. 起伏地形上规则二度体复重磁场正演和直接反演[J]. 物探与化探, 2003, 27(1): 33-38.
[15] 孙秀容, 刘志高, 许东儿, 戴纯俊. 上海市区区域工程场地剪切波地震稳定性评价[J]. 物探与化探, 2002, 26(5): 398-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com