E-mail Alert Rss
 

物探与化探, 2024, 48(2): 437-442 doi: 10.11720/wtyht.2024.1110

方法研究·信息处理·仪器研制

基于功率谱密度筛选的高海拔区背景噪声快速成像技术

刘迪,, 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想

黄河勘测规划设计研究院有限公司,河南 郑州 450003

A fast imaging technology for screening ambient noise in high-altitude areas based on power spectral density

LIU Di,, YANG Tao, SONG Hua-Dong, LI Guang-Chao, WU Guang-Rong, GUO Liang-Chun, ZHANG Jin-Xiang

Yellow River Engineering Consulting Co.,Ltd.,Zhengzhou 450003,China

责任编辑: 叶佩

收稿日期: 2023-04-18   修回日期: 2023-11-28  

基金资助: 黄河勘测规划设计研究院自主科研项目(2021KY050)

Received: 2023-04-18   Revised: 2023-11-28  

作者简介 About authors

刘迪(1996-),男,汉族,中国地质大学(北京)硕士研究生毕业,主要从事浅层背景噪声成像技术研究与应用工作。Email:liudi202303@163.com

摘要

真实且高信噪比的经验格林函数是准确提取面波频散和反演地下结构的前提,而实际噪声源分布与理论存在差异,且高海拔区噪声源数量少、能量弱,不仅需要长时间的数据采集,也难以获得高信噪比的经验格林函数。因此本文提出基于功率谱密度的背景噪声数据筛选方法,对某高海拔地区采集的92 h的背景噪声数据进行筛选,不仅大幅缩短了互相关计算时长,更有效提取了高信噪比的面波,减弱了高视速度干扰波,并获得了浅层0~140 m高分辨率的横波速度结构。本次研究为作业难度大的高海拔区开展周期短的水利水电勘察工作提供了新思路。

关键词: 功率谱密度; 数据筛选; 高海拔区; 背景噪声成像; 面波

Abstract

Acquiring empirical Green's functions with a real and high signal-to-noise ratio serves as a prerequisite for deriving surface wave dispersion and inverting underground structures.However,the distribution of actual noise sources differs from the theory,and the energy and quantity of noise sources are limited in the high-altitude areas.Acquiring empirical Green’s functions with a high signal-to-noise ratio is challenging,apart from a prolonged data acquisition period required.Given these,this study presented a method for screening ambient noise data based on power spectral density.Using this method,this study screened 92-hour ambient noise data from a high-altitude area.Consequently,this method significantly reduced the calculation time of cross-correlation,effectively extracted surface waves with a high signal-to-noise ratio,reduced the interference waves with high apparent velocities,and obtained a high-resolution shallow shear wave velocity structure of shallow parts with burial depths ranging from 0~140 m.This study provides a novel method for challenging,short-term exploration of water conservancy and hydropower generation in high-altitude areas.

Keywords: power spectral density; data selection; high-altitude area; ambient noise imaging; surface wave

PDF (4829KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘迪, 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想. 基于功率谱密度筛选的高海拔区背景噪声快速成像技术[J]. 物探与化探, 2024, 48(2): 437-442 doi:10.11720/wtyht.2024.1110

LIU Di, YANG Tao, SONG Hua-Dong, LI Guang-Chao, WU Guang-Rong, GUO Liang-Chun, ZHANG Jin-Xiang. A fast imaging technology for screening ambient noise in high-altitude areas based on power spectral density[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 437-442 doi:10.11720/wtyht.2024.1110

0 引言

随着西部大开发战略的推进,水利水电工程逐步向高海拔山区转移[1],高寒缺氧、地形地貌和地质条件复杂、高压线干扰、前期勘察周期短和基础资料缺乏,都给传统物探方法在高海拔区的开展带来巨大挑战。背景噪声面波法通过对台站记录的背景噪声进行互相关计算,提取台站间的经验格林函数,用以地下地质结构成像,具备无需人工震源、施工便捷、成本低且环保的优势,同时与传统主动源面波法相比背景噪声面波法频带宽、探测深度大。自地震学家Aki[2]提出以来,背景噪声成像技术已经广泛应用于地壳地幔[3]、区域尺度结构[4-5]、近地表速度结构[6-7]、盆地沉积结构[8]、古建筑地基探测[9]、地热勘探[10]和活动断层[11-12]等方面的研究。

理论上背景噪声方法要求噪声源随机均匀分布,且位于远场,而实际噪声源难以满足条件。为了获得更可靠的经验格林函数,国内外学者开展了大量研究,Larose等[13]提出one-bit归一化方法消除非稳态噪声的影响;Seydoux等[14]提出基于协方差矩阵特征谱均衡的环境噪声互相关预处理技术,减弱特定方向的强噪声影响,使噪声更加均匀,进而获得更可靠的经验格林函数;Xie等[15]基于信号窗口均方根和噪声窗口均方根比值的方法选择性叠加经验格林函数;Ventosa等[16]提出时间尺度的相位加权叠加方法,合理分配叠加权重,提高经验格林函数的信噪比。

高海拔区还存在噪声源数量少、能量弱的问题,需要长时间的数据采集,因此带来了巨大的计算量。基于前人的研究成果,本文提出基于功率谱密度的原始噪声筛选方法,通过对原始噪声进行功率谱密度分析,确定噪声能量在时频域的分布规律,进而筛选出强噪声数据进行处理。利用某高海拔区域采集的92 h背景噪声数据,成功筛选出了43 h的强噪声数据,通过互相关计算得到虚拟震源单炮。结果表明经过数据筛选不仅计算时长大幅减少,也提高了面波的信噪比,减少了高视速度干扰波,并获得了浅层0~140 m较高分辨率的横波速度剖面。同时又佐证了高频背景噪声面波方法在高海拔区域的适用性,为今后高海拔区域开展水利水电勘察工作提供借鉴意义。

1 数据与方法

1.1 数据

研究区地形平坦,适宜背景噪声面波方法的开展。综合考虑到野外工作难度、工作量和面波方法体积效应的问题,选用密集的线性排列。沿东北至西南方向,以20 m的道间距,布设了53台EPS短周期数字地震仪,全长1 040 m,台站分布如图1所示,另外为了使地震仪与地面充分耦合并减少风的影响,我们将台站充分掩埋。以500 Hz的采样率,自2022年9月13日12:00至17日8:00共采集了92 h的背景噪声数据,由于部分台站GPS损坏,共成功采集到50个台站的数据。与空间自相关方法相比被动源面波多道分析方法(MAPS)[17]更适宜于线性阵列的频散提取[18],因此本研究选用Z分量数据,采用MAPS方法处理背景噪声数据,以获得地下横波速度结构。

图1

图1   实验区位置及台站分布

Fig.1   Experimental area location and station distribution


1.2 基于功率谱密度的数据筛选方法

1.2.1 功率谱密度原理

功率谱密度是分析噪声时频域特征的有效手段[19-20]。首先对长时间的原始噪声序列分段,再求取每一段的功率谱,最后按数据段的时间顺序组合成功率谱密度图,这样不仅能够反映噪声能量的频率域分布,更能分析噪声随时间的变化情况,是背景噪声数据筛选的基础。具体算法如下:

周期时间序列x(t)的傅里叶变换可表示为:

X(f,Tr)=0Trx(t)e-i2πftdt,

其中:f是频率;Tr是时间序列的长度;对于某个离散频率值fn可定义为:

Xn=X(fn,Tr)Δt,

其中:fn=n/(NΔt),n=1,2,,N;Δt是采样间隔;N是时间序列的采样点数,N=Tr/Δt;则功率谱密度就可以定义为:

Pn=2ΔtNXn|2

1.2.2 数据筛选方法

测区处于牧区草场内,海拔约3 300 m,人迹罕至,噪声源数量少、能量弱,为了快速获得高信噪比的面波信号,我们提出基于功率谱密度的背景噪声数据筛选技术。首先对原始噪声进行功率谱密度分析,获得噪声时频域能量变化规律,进而筛选出强噪声数据和弱噪声数据,再结合功率谱密度分析获得的噪声频带信息,对强噪声数据进行处理,最后获得高分辨率的横波速度结构,如图2所示。

图2

图2   背景噪声数据筛选方法

Fig.2   Ambient noise data selection method


2 数据筛选与处理

2.1 数据筛选

图3a是采集的部分道92 h原始波形,振幅随时间变化强烈,强弱噪声交替出现,波形一致性好、不同道振幅分布差异性小。对原始背景噪声以20 s的时间步长,20%的重叠率,分析0~30 Hz的功率谱密度,并将每个测点的功率谱密度图叠加,得到整条测线全时间段平均功率谱密度(图3b),发现在3~30 Hz噪声强弱能量随时间交替出现,在时间上与原始波形一致性良好,而0~3 Hz的噪声稳定强,整体能量较弱,不存在规律性变化的特征。综上,基于背景噪声随时间强弱噪声交替出现的特征,筛选出强噪声数据共43 h(红色框内),弱噪声数据共49 h。

图3

图3   部分道原始噪声波形(a)和原始噪声平均功率谱密度(b)

Fig.3   Partial channel original noise waveform(a) and average power spectral density of original noise(b)


2.2 数据处理

2.2.1 预处理

首先进行单站数据预处理。检查波形数据剔除坏道,将长时间的原始背景噪声数据截取为30 min一段的连续波形数据[21],再去均值、去趋势,采用one-bit归一化方法,使正振幅为1,负振幅为-1,保留相位信息,从而消除台站周围非平稳噪声的影响,并做谱白化处理,将频率域的幅值谱归一化,以拓宽频带[22],最后进行1~35 Hz带通滤波处理。

2.2.2 互相关计算

互相关型地震干涉算法是常见的恢复经验格林函数方法之一。本文利用互相关算法分别对每一段数据进行互相关计算,再叠加,以每个台站的位置为虚拟震源合成虚拟单炮记录。分别选用全时段数据(共92 h)、强噪声数据(共43 h)和弱噪声数据(49 h)进行处理。结果表明,强噪声数据恢复的面波能量更强、信噪比更高、信号更收敛(图4b),而弱噪声数据恢复的面波信噪比低,存在异常高视速度同相轴干扰(图4c黄圈内),如果未经选择盲目用全时段数据相关叠加,不但会降低面波的信噪比,同时会引入弱噪声时段存在的高视速度干扰波(图4a)。

图4

图4   第7点虚拟震源单炮

Fig.4   Point 7 virtual source single shot


为了更直观、定量表征数据筛选对面波信噪比和计算速度的提高,依据面波线性的特征,通过视速度确定面波信号窗口(118~1 175 m/s)[23],其余为噪声窗口。可以清晰看出,在信号窗口中存在清晰、强能量的面波,并利用信号窗口和噪声窗口绝对振幅平均值之比确定面波的信噪比,如图5所示。结果表明利用筛选的强噪声数据获得的虚拟单炮,不仅面波信噪比最高,而且计算时长远低于全时段数据,因此本文采用强噪声数据获得的虚拟单炮进行面波频散提取。

图5

图5   不同类型数据虚拟单炮信噪比及计算时长

Fig.5   Virtual source single shot signal-to-noise ratio and calculation duration of different types of data


2.2.3 频散提取与反演

采用相移法,选用虚拟单炮的炮点所在道和其后的23道作为一个排列进行频散分析,再依次往前滚动处理其他虚拟单炮,以获得不同位置的面波频散信息。图6为第7点为虚拟震源时面波的频率—相速度,面波频散能量集中、收敛性好,分布于3~20 Hz,满足准确提取频散曲线的条件。

图6

图6   第7点频率—相速度

Fig.6   Point 7 frequency-phase velocity


根据面波影响深度(深色范围),设置100 m、8层的初始模型,层厚梯度0.5,用最小二乘法反演,经过15次迭代,均方根值为5.82 m/s,误差约1.56%,反演结果与相速度曲线吻合良好,如图7所示,并将其作为排列中点的横波速度信息。然后依次反演每一个虚拟源单炮获得的频散曲线,进而获得长580 m、深140 m的横波速度剖面,如图8所示。根据横波速度剖面特征,可以大致将其分为3层:①速度200~400 m/s,深度约0~20 m,速度结构非常稳定,横向均匀性和纵向成层性好;②速度400~700 m/s,深度约20~60 m,速度结构稳定,纵向成层性好,速度等值线密集,梯度变化大,横向速度结构呈沿测线方向逐渐变薄的趋势;③速度700~1 200 m/s,深度约60~140 m,速度结构较稳定,横向存在一定程度起伏,其中横向260~400 m处横波速度略低。图1所示距测线约1.25 km的钻孔,所揭露的地层也可大致分为3层:①0~26.3 m,干燥、稍密的沙土层;②26.3~63.5 m,稍湿、稍密—中密的粉土、砂卵石和砂砾石互层;③63.5~120 m,湿、中密的砂、粉质黏土和砂砾石互层。横波速度层与钻孔所揭露的地层基本吻合,表明该方法的有效性。

图7

图7   第7点横波速度反演

Fig.7   Point 7 S-wave velocity inversion


图8

图8   横波速度剖面

Fig.8   S-wave velocity profile


3 结论

在噪声源数量少、能量弱的高海拔区,开展背景噪声方法往往需要长时间的数据采集,带来巨大计算量,并且难以获得高信噪比面波,因此笔者提出了基于功率谱密度的背景噪声数据筛选方法,利用某高海拔区域53台仪器采集的92 h背景噪声数据开展研究,得到如下结论:

1)根据功率谱密度图的噪声能量分布特征,能够有效筛选出可靠的强噪声数据,基于筛选结果进行数据处理,能够大幅提升互相关计算效率,提高面波的信噪比,并减少异常高视速度同相轴的干扰。

2)该方法具备不依赖人工震源和布设简便的特点,极大降低了工作的难度和成本,能够快速获得高分辨率的横波速度结构,对高海拔等特殊区域的水利、电力工程建设具有重要意义。

参考文献

吴学雷.

实测资料缺乏条件下水电工程勘察设计技术应用

[J]. 云南水力发电, 2017, 33(5):74-79.

[本文引用: 1]

Wu X L.

Application of the survey and design technology of a hydropower project in the case of shortage of observed data

[J]. Yunnan Water Power, 2017, 33(5):74-79.

[本文引用: 1]

Aki K.

Space and time spectra of stationary stochastic waves,with special reference to microtremors

[J]. Bulletin of the Earthquake Research Institute, 1957, 35:415-456.

[本文引用: 1]

Liu Y N, Niu F L, Chen M, et al.

3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography

[J]. Earth and Planetary Science Letters, 2017, 461:20-29.

DOI:10.1016/j.epsl.2016.12.029      URL     [本文引用: 1]

Wang K, Liu Q Y, Yang Y J.

Three-dimensional sensitivity kernels for multicomponent empirical Green's functions from ambient noise:Methodology and application to adjoint tomography

[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(6):5794-5810.

DOI:10.1029/2018JB017020      URL     [本文引用: 1]

Adjoint tomography has recently been applied to ambient noise data as a new and promising tomographic method that utilizes simulation‐based 3‐D sensitivity kernels rather than ray theory used in traditional ambient noise tomography. However, to date, most studies of ambient noise adjoint tomography only use vertical‐component Rayleigh waves. In this study, we develop a theoretical framework for calculating sensitivity kernels for multicomponent empirical Green's functions extracted from ambient noise data. Under the framework of the adjoint method, we demonstrate that a horizontal component (transverse‐transverse or radial‐radial) kernel can be constructed from the interaction of wave fields generated by point‐force sources acting in the north and east directions based on rotation relationships. Our method is benchmarked for a 3‐D heterogeneous isotropic model by comparing rotated seismograms, individual, and event traveltime misfit kernels with corresponding references computed by numerical simulations with sources directly placed in the radial or transverse directions. Based on our new method, we perform the first Love‐wave ambient noise adjoint tomography in southern California and construct an improved VSH model. Our method for computing sensitivity kernels of multicomponent empirical Green's functions provides the basis for multicomponent ambient noise adjoint tomography in imaging radially anisotropic shear‐wave velocity structures.

Yao H J.

Building the community velocity model in the Sichuan-Yunnan region,China:Strategies and progresses

[J]. Science China Earth Sciences, 2020, 63(9):1425-1428.

DOI:10.1007/s11430-020-9645-3      [本文引用: 1]

Xia J H.

Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods

[J]. Journal of Applied Geophysics, 2014, 103:140-151.

DOI:10.1016/j.jappgeo.2014.01.016      URL     [本文引用: 1]

邵广周, 李远林, 岳亮.

主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用

[J]. 物探与化探, 2022, 46(4):897-903.

[本文引用: 1]

Shao G Z, Li Y L, Yue L.

Joint application of active and passive surface wave in 3D imaging of loess covered area

[J]. Geophysical and Geochemical Exploration, 2022, 46(4):897-903.

[本文引用: 1]

王仁涛, 李志伟, 包丰, .

松辽盆地沉积层结构的短周期地震背景噪声成像研究

[J]. 地球物理学报, 2019, 62(9):3385-3399.

DOI:10.6038/cjg2019M0144      [本文引用: 1]

使用位于松辽盆地内部的NECESSArray台阵连续两年背景噪声数据,通过波形互相关和多重滤波方法提取到2~14 s较短周期的Rayleigh波群速度和相速度频散曲线,基于快速行进(FMM)面波成像方法得到群速度和相速度成像结果,并采用最小二乘迭代线性方法反演获得了松辽盆地深至12 km的三维S波速度结构.本文成像结果显示:松辽盆地内部S波速度分布的横向不均匀性与该区域的构造单元呈现出良好的空间对应关系.从地表至下方的6 km深度,盆地北部比南部表现出更加强烈的低速异常,这一特征可能与盆地南北的沉积构造差异有关.中央坳陷区低速异常的边界与嫩江断裂走向相互平行,表明盆地基底断裂对盆地形成演化具有一定的控制作用.在垂直速度结构剖面中,2.9 km&#183;s<sup>-1</sup>的S波速度等值线与地震反射剖面显示的盆地基底深度大致对应.基于S波速度模型和盆地基底速度(2.9 km&#183;s<sup>-1</sup>),我们获得精细的松辽盆地沉积层厚度模型,结果表明松辽盆地的沉积层厚度分布呈现出中间厚、四周薄的特征,中央坳陷区的沉积层厚度范围大约在3~6 km.

Wang R T, Li Z W, Bao F, et al.

S-wave velocity structure of sediment in Songliao Basin from short-period ambient noise tomography

[J]. Chinese Journal of Geophysics, 2019, 62(9):3385-3399.

[本文引用: 1]

刘旭, 钱荣毅, 兰澜, .

登封观星台地基超高密度背景噪声探测

[J]. 科学技术与工程, 2022, 22(6):2193-2200.

[本文引用: 1]

Liu X, Qian R Y, Lan L, et al.

Ultra-high-density ambient noise detection on the foundation of Dengfeng observatory

[J]. Science Technology and Engineering, 2022, 22(6):2193-2200.

[本文引用: 1]

董耀, 李光辉, 高鹏举, .

微动勘查技术在地热勘探中的应用

[J]. 物探与化探, 2020, 44(6):1345-1351.

[本文引用: 1]

Dong Y, Li G H, Gao P J, et al.

The application of fretting exploration technology in the exploration of middle and deep clean energy

[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.

[本文引用: 1]

Qian R Y, Liu L B.

Imaging the active faults with ambient noise passive seismics and its application to characterize the Huangzhuang-Gaoliying fault in Beijing Area,Northern China

[J]. Engineering Geology, 2020, 268:105520.

DOI:10.1016/j.enggeo.2020.105520      URL     [本文引用: 1]

刘伟, 黄韬, 王庭勇, .

综合物探方法在城市隐伏断裂探测中的应用

[J]. 物探与化探, 2021, 45(4):1077-1087.

[本文引用: 1]

Liu W, Huang T, Wang T Y, et al.

The application of integrated geophysical prospecting methods to the exploration of urban buried fault

[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1077-1087.

[本文引用: 1]

Larose E, Derode A, Campillo M, et al.

Imaging from one-bit correlations of wideband diffuse wave fields

[J]. Journal of Applied Physics, 2004, 95(12):8393-8399.

DOI:10.1063/1.1739529      URL     [本文引用: 1]

We present an imaging technique based on correlations of a multiply scattered wave field. Usually the Green’s function hAB between two points (A,B) is determined by direct transmit/receive measurement. When this is impossible, one can exploit an other idea: if A and B are both passive sensors, hAB can be retrieved from the cross correlation of the fields received in A and B, the wave field being generated either by deterministic sources or by random noise. The validity of the technique is supported by a physical argument based on time-reversal invariance. Though the principle is applicable to all kinds of waves, it is illustrated here by experiments performed with ultrasound in the MHz range. A short ultrasonic pulse, sent through a highly scattering slab, generates a randomly scattered field. Behind the slab is the medium to image: it consists of four liquid layers with different sound speeds. The cross correlation of the field received on passive sensors located within the medium is used to estimate the speed of sound. The experimental results show that the sound-speed profile of the layered medium can be precisely imaged. We emphasize the role of wideband multiple scattering and of source averaging in the efficiency of the method, as well as the benefit of performing one-bit correlations. Applications to seismology are discussed.

Seydoux L, de Rosny J, Shapiro N M.

Pre-processing ambient noise cross-correlations with equalizing the covariance matrix eigenspectrum

[J]. Geophysical Journal International, 2017, 210(3):1432-1449.

DOI:10.1093/gji/ggx250      URL     [本文引用: 1]

Xie J Y, Yang Y J, Luo Y H.

Improving cross-correlations of ambient noise using an rms-ratio selection stacking method

[J]. Geophysical Journal International, 2020, 222(2):989-1002.

DOI:10.1093/gji/ggaa232      URL     [本文引用: 1]

Stacking of ambient noise correlations is a crucial step to extract empirical Green's functions (EGFs) between station pairs. The traditional method is to linearly stack all short-duration cross-correlation functions (CCFs) over a long period of time to obtain final stacks. It requires at least several months of ambient noise data to obtain reliable phase velocities at periods of several to tens of seconds from CCFs. In this study, we develop a new stacking method named root-mean-square ratio selection stacking (RMSR_SS) to reduce the time duration required for the recovery of EGFs from ambient noise. In our RMSR_SS method, rather than stacking all short-duration CCFs, we first judge if each of the short-duration CCF constructively contributes to the recovery of EGFs or not. Then, we only stack those CCFs which constructively contribute to the convergence of EGFs. By applying our method to synthetic noise data, we demonstrate how our method works in enhancing the signal-to-noise ratio of CCFs by rejecting noise sources which do not positively contribute to the recovery of EGFs. Then, we apply our method to real noise data recorded in western USA. We show that reliable and accurate phase velocities can be measured from 15-d long ambient noise data using our RMSR_SS method. By applying our method to ambient noise tomography (ANT), we can reduce the deployment duration of seismic stations from several months or years to a few tens of days, significantly improving the efficiency of ANT in imaging crust and upper-mantle structures.

Ventosa S, Schimmel M, Stutzmann E.

Extracting surface waves,hum and normal modes:Time-scale phase-weighted stack and beyond

[J]. Geophysical Journal International, 2017, 211(1):30-44.

DOI:10.1093/gji/ggx284      URL     [本文引用: 1]

Cheng F, Xia J H, Luo Y H, et al.

Multichannel analysis of passive surface waves based on crosscorrelations

[J]. Geophysics, 2016, 81(5):EN57-EN66.

[本文引用: 1]

Cheng F, Xia J H, Shen C, et al.

Imposing active sources during high-frequency passive surface-wave measurement

[J]. Engineering, 2018, 4(5):685-693.

DOI:10.1016/j.eng.2018.08.003      URL     [本文引用: 1]

Peterson J.

Observations and modeling of seismic background noise

[R]. U.S. Geological Survey Open File Report, 1993:93-322.

[本文引用: 1]

刘亚楠, 刘保华, 刘晨光, .

南海东部次海盆地震背景噪声分析

[J]. 海洋地质与第四纪地质, 2021, 41(2):109-117.

[本文引用: 1]

Liu Y N, Liu B H, Liu C G, et al.

Research on seismic background noise in the Eastern Subbasin of the South China Sea

[J]. Marine Geology & Quaternary Geology, 2021, 41(2):109-117.

[本文引用: 1]

Seats K J, Lawrence J F, Prieto G A.

Improved ambient noise correlation functions using Welch's method

[J]. Geophysical Journal International, 2012, 188(2):513-523.

DOI:10.1111/gji.2012.188.issue-2      URL     [本文引用: 1]

Bensen G D, Ritzwoller M H, Barmin M P, et al.

Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements

[J]. Geophysical Journal International, 2007, 169(3):1239-1260.

DOI:10.1111/gji.2007.169.issue-3      URL     [本文引用: 1]

Pang J Y, Cheng F, Shen C, et al.

Automatic passive data selection in time domain for imaging near-surface surface waves

[J]. Journal of Applied Geophysics, 2019, 162:108-117.

DOI:10.1016/j.jappgeo.2018.12.018      URL     [本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com