Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1054-1064    DOI: 10.11720/wtyht.2024.0025
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于改进粒子群算法的VTI介质裂隙预测
李勤1,4(), 杨晓迎1(), 姜星宇2, 李江3
1.西安科技大学 地质与环境学院,陕西 西安 710054
2.西安科技大学 测绘科学与技术学院,陕西 西安 710054
3.中煤科工集团 西安研究院,陕西 西安 710077
4.自然资源部 煤炭资源勘查与综合利用重点实验室,陕西 西安 710021
Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm
LI Qin1,4(), YANG Xiao-Ying1(), JIANG Xing-Yu2, LI Jiang3
1. College of Geology and Environment,Xi'an University of Science and Technology,Xi'an 710054,China
2. College of Geomatics,Xi'an University of Science and Technology,Xi'an 710054,China
3. CCTEG Xi'an Research Institute,Xi'an 710077,China
4. Key Laboratory of Coal Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi'an 710021,China
全文: PDF(10854 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

裂隙产生的各向异性在地层介质中广泛存在,基于各向异性的裂隙参数反演和预测在一定程度上能提高裂隙反演的精度和预测的可靠性。本文通过建立基于VTI介质的反射系数方程,引入模拟退火算法中的Metropolis准则设置跳出概率对粒子群标准算法进行改进,实现对VTI介质中纵、横波速度及各向异性参数等属性的反演;并通过各向异性相关的属性、泊松比和泊松速度的联合,实现对裂隙充填物的预测。通过二层模型和Marmousi2模型对算法的稳定性和抗噪性进行测试,论证了方法的可行性;并进一步将方法应用于煤矿实际资料,对裂隙含水性进行预测,论证了方法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李勤
杨晓迎
姜星宇
李江
关键词 VTI介质粒子群算法地震反演裂隙预测    
Abstract

The anisotropy caused by fractures is ubiquitous in formation media.The inversion and prediction of fracture parameters based on anisotropy can somewhat improve the inversion accuracy and prediction reliability of fractures.This study established a reflection coefficient equation based on vertical transverse isotropy(VTI) media.Then,it improved the standard particle swarm optimization algorithm by setting the exit probability based on the Metropolis criterion of the simulated annealing algorithm.Consequently,it obtained the inversion results of compressional- and shear-wave velocities and anisotropy parameters in VTI media.By combining anisotropy-related attributes,Poisson's ratio,and Poisson's velocity, this study predicted the fillers in fractures.The improved algorithm was tested for stability and noise resistance using a two-layer model and a Marmousi2 model,demonstrating its feasibility.Furthermore,the improved algorithm was applied to predict the water-bearing property of fractures using real coal mine data,validating its effectiveness.

Key wordsvertical transverse isotropy(VTI) media    particle swarm optimization algorithm    seismic inversion    fracture prediction
收稿日期: 2024-02-23      修回日期: 2024-05-10      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“煤层地震波各向异性响应及裂隙预测”(41674135);陕西省自然科学基础研究项目“煤矿隐蔽致灾地质体地震波场模拟与深度域成像方法研究”(2024JC-YBMS-236)
通讯作者: 杨晓迎(1997-),女,硕士研究生,主要从事各向异性介质裂隙预测研究工作。Email:aircraftyxy@163.com
作者简介: 李勤(1979-),女,博士,副教授,主要从事地震波各向异性研究工作。Email:eriliqin@126.com
引用本文:   
李勤, 杨晓迎, 姜星宇, 李江. 基于改进粒子群算法的VTI介质裂隙预测[J]. 物探与化探, 2024, 48(4): 1054-1064.
LI Qin, YANG Xiao-Ying, JIANG Xing-Yu, LI Jiang. Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm. Geophysical and Geochemical Exploration, 2024, 48(4): 1054-1064.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0025      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1054
地层 层厚
度/m
纵波速度
VP/
(km·s-1)
横波速度
VS/
(km·s-1)
密度ρ/
(g·cm-3)
各向异性
参数ε
各向异性
参数δ
A 245 4.6 2.5 2.65 0 0
B 355 5.5 3.5 2.70 0.15 0.05
Table 1  二层模型参数[39-40]
Fig.1  二层模型的角道集
Fig.2  二层模型反演结果
Fig.3  信噪比为10 dB时的角道集
信噪比 反演对比 纵波速度/
(km·s-1)
横波速度/
(km·s-1)
密度/(g·cm-3) 各向异性参数ε 各向异性参数δ
理论值 5.500 3.500 2.700 0.150 0.050
无噪声 粒子群反演值 5.479 3.481 2.773 0.143 0.051
误差/% 0.382 0.543 2.719 4.667 2.060
SNR=10 粒子群反演值 5.457 3.573 2.545 0.162 0.052
误差/% 0.776 2.099 5.741 8.236 4.684
无噪声 改进粒子群反演值 5.482 3.517 2.742 0.158 0.049
误差/% 0.329 0.473 1.543 5.775 1.095
SNR=10 改进粒子群反演值 5.467 3.524 2.759 0.140 0.048
误差/% 0.600 0.696 2.201 6.667 3.572
Table 2  二层模型下层VTI介质的反演结果误差分析
Fig.4  Marmousi2原始模型
Fig.5  对目标位置提取的角道集
a—含水区域;b—含气区域;c—含油区域
Fig.6  选定Marmousi2模型待反演区域一(图中裂隙为含水区域)的原始剖面与反演结果剖面
a、b、c、g、i—分别为纵波速度、横波速度、密度、εδ原始剖面; d、e、f、h、j—分别为纵波速度、横波速度、密度、εδ反演剖面
Fig.7  选定Marmousi2模型待反演区域二(图中裂隙为含气区域)的原始剖面与反演结果剖面
a、b、c、g、i—分别为纵波速度、横波速度、密度、εδ原始剖面;d、e、f、h、j—分别为纵波速度、横波速度、密度、εδ反演剖面
Fig.8  选定Marmousi2模型待反演区域三(图中裂隙为含油区域)的原始剖面与反演结果剖面
a、b、c、g、i—分别为纵波速度、横波速度、密度、εδ原始剖面;d、e、f、h、j—分别为纵波速度、横波速度、密度、εδ反演剖面
Fig.9  区域一(图中裂隙为含水区域)A、B、C属性剖面
Fig.10  区域二(图中裂隙为含气区域)A、B、C属性剖面
Fig.11  区域三(图中裂隙为含油区域)A、B、C属性剖面
Fig.12  Marmousi2模型中截取的3个区域的泊松比
Fig.13  Marmousi2模型中截取的3个区域的泊松速度
Fig.14  叠加剖面(Inline317)
Fig.15  角道集
Fig.16  目标区域参数剖面
a—属性A;b—属性B;c—属性C;d—泊松比;e—泊松速度;f—测井曲线
[1] 刘世奇, 王鹤, 王冉, 等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报, 2021, 39(1):212-230.
[1] Liu S Q, Wang H, Wang R, et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica, 2021, 39(1):212-230.
[2] 唐杰, 李聪, 温雷, 等. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4):859-865.
[2] Tang J, Li C, Wen L, et al. A study of influence of fracture connectivity on wave propagation characteristics[J]. Geophysical and Geochemical Exploration, 2019, 43(4):859-865.
[3] 蔡刚, 杨子玉, 李双文, 等. 埕海潜山奥陶系碳酸盐岩裂缝预测[J]. 地球物理学进展, 2013, 28(2):945-951.
[3] Cai G, Yang Z Y, Li S W, et al. Fracture prediction of Ordovician carbonate rock in the buried hill of Chenghai[J]. Progress in Geophysics, 2013, 28(2):945-951.
[4] Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242:96-108.
[5] 张保卫, 岳航羽, 谢伟, 等. 反射地震在冀中坳陷保定凹陷精细地质结构探测中的应用[J]. 物探与化探, 2022, 46(6):1359-1368.
[5] Zhang B W, Yue H Y, Xie W, et al. Application of the seismic reflection method in detecting the fine-scale geological structure of the Baoding Sag,Jizhong depression[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1359-1368.
[6] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
[7] Thomsen L. Reflection seismology over azimuthally anisotropic media[J]. Geophysics, 1988, 53(3):304-313.
[8] Rüger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics, 1998, 63(3):935-947.
[9] Hudson J A. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophysical Journal International, 1986, 87(1):265-274.
[10] Crampin S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4):343-391.
[11] Crampin S, Chesnokov E M, Hipkin R G. Seismic anisotropy —the state of the art:II[J]. Geophysical Journal International, 1984, 76(1):1-16.
[12] Schoenberg M. Orthorhombic media:Modeling elastic wave behavior in a vertically fractured earth[J]. Geophysics, 1997, 62(6):1954-1974.
[13] Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part II:Fractured models with orthorhombic symmetry[J]. Geophysics, 2000, 65(6):1803-1817.
[14] Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part III:Fractured models with monoclinic symmetry[J]. Geophysics, 2000, 65(6):1818-1830.
[15] Tsvankin I. P-wave signatures and notation for transversely isotropic media:An overview[J]. Geophysics, 1996, 61(2):467-483.
[16] Tsvankin I, Thomsen L. Nonhyperbolic reflection moveout in anisotropic media[J]. Geophysics, 1994, 59(8):1290-1304.
[17] Pšenčík I, Martins J L. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica, 2001, 45(2):176-199.
[18] Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(3):C19-C29.
[19] 孟庆生, 何樵登, 王德利. 均匀横向各向同性介质中P波及SV波的射线规律[J]. 吉林大学学报:地球科学版, 2002, 32(4):378-381.
[19] Meng Q S, He Q D, Wang D L. Study on P,SV-wave features in homogeneous transversely isotropic media[J]. Journal of Changchun University of Science and Technology, 2002, 32(4):378-381.
[20] Hao Z T, Yao C, Wang X. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media[J]. Progress in Geophysics, 2006, 21(2):524-530.
[21] 李磊. TI介质中的相速度和群速度及射线参数[J]. 石油物探, 2008, 47(4):334-337.
[21] Li L. Phase velocity,group velocity,and ray parameters in transversely isotropic media[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):334-337.
[22] Farra V, Pšenčík I. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry[J]. Studia Geophysica et Geodaetica, 2016, 60(3):403-418.
[23] Ding P B, Di B R, Wang D, et al. P- and S-wave velocity and anisotropy in saturated rocks with aligned cracks[J]. Wave Motion, 2018, 81:1-14.
[24] 陈同俊, 崔若飞, 刘恩儒. VTI型构造煤AVO正演模拟[J]. 煤炭学报, 2009, 34(4):438-442.
[24] Chen T J, Cui R F, Liu E R. AVO forward modeling for VTI coal[J]. Journal of China Coal Society, 2009, 34(4):438-442.
[25] 陈亮, 黄建平, 王自颖, 等. 应用自适应变网格紧致差分的地震波数值模拟及逆时偏移[J]. 石油地球物理勘探, 2023, 58(3):641-650.
[25] Chen L, Huang J P, Wang Z Y, et al. Seismic numerical simulation and reverse time migration with adaptive variable-grid and compact difference method[J]. Oil Geophysical Prospecting, 2023, 58(3):641-650.
[26] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
[26] Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
[27] Yan X S, Zhang M Z, Wu Q H. Big-data-driven pre-stack seismic intelligent inversion[J]. Information Sciences, 2021, 549:34-52.
[28] 陈志刚, 刘雷颂, 刘雅琴, 等. 煤系地层中薄砂岩储层预测[J]. 石油地球物理勘探, 2016, 51(S1):52-57.
[28] Chen Z G, Liu L S, Liu Y Q, et al. Thin-sandstone reservoir prediction in coal-bearing strata[J]. Oil Geophysical Prospecting, 2016, 51(S1):52-57.
[29] Pan X P, Zhang G Z. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model[J]. Geophysics, 2019, 84(1):R85-R98.
[30] 乔汉青. 基于改进粒子群算法的横波速度预测方法研究[D]. 长春: 吉林大学, 2017.
[30] Qiao H Q. Shear wave velocity prediction method based on improved particle swarm algorithm[D]. Changchun: Jilin University, 2017.
[31] Li Q, Wang W. AVO inversion in orthotropic media based on SA-PSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8903-8912.
[32] 张进, 陈晓琦, 邢磊, 等. 基于改进粒子群算法的叠前弹性阻抗反演[J]. 物探化探计算技术, 2016, 38(3):353-360.
[32] Zhang J, Chen X Q, Xing L, et al. Application of particle swarm optimization in prestack elastic impedance inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(3):353-360.
[33] 张晓阳, 杜文凤, 卢勇旭, 等. 粒子群算法在煤田地震面波频散曲线反演中的应用研究[C]// 2015中国地球科学联合学术年会论文集(二十三)——专题55煤炭资源与矿山安全地球物理,北京, 2015:73-74.
[34] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22):1-12.
doi: 10.3778/j.issn.1002-8331.2006-0291
[34] Li Y L, Wang S Q, Chen Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22):1-12.
doi: 10.3778/j.issn.1002-8331.2006-0291
[35] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4):1014-1020.
[35] Zhang P F, Zhang S H. Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1014-1020.
[36] Zhang F, Zhang T, Li X Y. Seismic amplitude inversion for the transversely isotropic media with vertical axis of symmetry[J]. Geophysical Prospecting, 2019, 67(9):2368-2385.
doi: 10.1111/1365-2478.12842
[37] 吴大奎, 张本全, 戴勇, 等. 地震资料气水识别方法及其应用[J]. 天然气工业, 2011, 31(12):54-58.
[37] Wu D K, Zhang B Q, Dai Y, et al. Seismic identification methods for gas and water layers and their application[J]. Natural Gas Industry, 2011, 31(12):54-58.
[38] Quakenbush M, Shang B, Tuttle C. Poisson impedance[J]. The Leading Edge, 2006, 25(2):128-138.
[39] Rutherford S R, Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics, 1989, 54(6):680-688.
[40] Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for Marmousi[J]. The Leading Edge, 2006, 25(2):156-166.
[1] 张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
[2] 陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
[3] 张小艳, 许慧, 姜水军. 基于UPSO-Kriging的综采工作面三维建模研究[J]. 物探与化探, 2021, 45(4): 1071-1076.
[4] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[5] 臧子婧, 吴海波, 丁海, 张平松, 董守华. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
[6] 郭旭, 黄建平, 李振春, 黄金强, 朱峰. 基于行波分离的VTI介质逆时偏移[J]. 物探与化探, 2019, 43(1): 100-109.
[7] 国春香, 郭淑文, 翟桐立, 邢兴, 陈璞. 地震压力系数预测在深层天然气勘探中的应用[J]. 物探与化探, 2017, 41(5): 852-855.
[8] 冉然, 宋建国. 基于Zoeppritz方程的纵横波模量反演[J]. 物探与化探, 2017, 41(4): 707-714.
[9] 谢会文, 许永忠, 郑多明, 王兴军, 苗青, 徐亚, 汤浩哲. 火成岩速度反演及三维速度场建立的关键技术及效果分析[J]. 物探与化探, 2013, 37(6): 1071-1079.
[10] 董娉婷, 杨飞, 易浩, 聂领. 多参数岩性地震反演在盐岩地下储气库泥岩夹层分布中的应用[J]. 物探与化探, 2013, 37(2): 318-322,327.
[11] 崔永谦, 邵龙义, 谢建荣, 胡建玲, 杜维良, 冯小英. 河流砂岩地震储层预测中的几个问题[J]. 物探与化探, 2010, 34(1): 54-58.
[12] 侯伯刚, 刘文岭, 罗娜. 地震反演中测井数据的预处理[J]. 物探与化探, 2009, 33(3): 331-336.
[13] 罗小明, 王世瑞. 纵波VTI介质各向异性参数的求取[J]. 物探与化探, 2006, 30(3): 233-235.
[14] 郎静, 梁峰, 候伯刚. 油藏精细描述技术在歧南西斜坡 隐蔽油气藏勘探中的应用[J]. 物探与化探, 2006, 30(2): 123-128.
[15] 沈财余, 崔汝国. 影响测井约束地震反演地质效果因素的分析[J]. 物探与化探, 2003, 27(2): 123-127,138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com