Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm
LI Qin1,4(), YANG Xiao-Ying1(), JIANG Xing-Yu2, LI Jiang3
1. College of Geology and Environment,Xi'an University of Science and Technology,Xi'an 710054,China 2. College of Geomatics,Xi'an University of Science and Technology,Xi'an 710054,China 3. CCTEG Xi'an Research Institute,Xi'an 710077,China 4. Key Laboratory of Coal Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi'an 710021,China
The anisotropy caused by fractures is ubiquitous in formation media.The inversion and prediction of fracture parameters based on anisotropy can somewhat improve the inversion accuracy and prediction reliability of fractures.This study established a reflection coefficient equation based on vertical transverse isotropy(VTI) media.Then,it improved the standard particle swarm optimization algorithm by setting the exit probability based on the Metropolis criterion of the simulated annealing algorithm.Consequently,it obtained the inversion results of compressional- and shear-wave velocities and anisotropy parameters in VTI media.By combining anisotropy-related attributes,Poisson's ratio,and Poisson's velocity, this study predicted the fillers in fractures.The improved algorithm was tested for stability and noise resistance using a two-layer model and a Marmousi2 model,demonstrating its feasibility.Furthermore,the improved algorithm was applied to predict the water-bearing property of fractures using real coal mine data,validating its effectiveness.
李勤, 杨晓迎, 姜星宇, 李江. 基于改进粒子群算法的VTI介质裂隙预测[J]. 物探与化探, 2024, 48(4): 1054-1064.
LI Qin, YANG Xiao-Ying, JIANG Xing-Yu, LI Jiang. Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm. Geophysical and Geochemical Exploration, 2024, 48(4): 1054-1064.
Liu S Q, Wang H, Wang R, et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica, 2021, 39(1):212-230.
Tang J, Li C, Wen L, et al. A study of influence of fracture connectivity on wave propagation characteristics[J]. Geophysical and Geochemical Exploration, 2019, 43(4):859-865.
Cai G, Yang Z Y, Li S W, et al. Fracture prediction of Ordovician carbonate rock in the buried hill of Chenghai[J]. Progress in Geophysics, 2013, 28(2):945-951.
[4]
Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242:96-108.
Zhang B W, Yue H Y, Xie W, et al. Application of the seismic reflection method in detecting the fine-scale geological structure of the Baoding Sag,Jizhong depression[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1359-1368.
[6]
Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
[7]
Thomsen L. Reflection seismology over azimuthally anisotropic media[J]. Geophysics, 1988, 53(3):304-313.
[8]
Rüger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics, 1998, 63(3):935-947.
[9]
Hudson J A. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophysical Journal International, 1986, 87(1):265-274.
[10]
Crampin S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4):343-391.
[11]
Crampin S, Chesnokov E M, Hipkin R G. Seismic anisotropy —the state of the art:II[J]. Geophysical Journal International, 1984, 76(1):1-16.
[12]
Schoenberg M. Orthorhombic media:Modeling elastic wave behavior in a vertically fractured earth[J]. Geophysics, 1997, 62(6):1954-1974.
[13]
Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part II:Fractured models with orthorhombic symmetry[J]. Geophysics, 2000, 65(6):1803-1817.
[14]
Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part III:Fractured models with monoclinic symmetry[J]. Geophysics, 2000, 65(6):1818-1830.
[15]
Tsvankin I. P-wave signatures and notation for transversely isotropic media:An overview[J]. Geophysics, 1996, 61(2):467-483.
[16]
Tsvankin I, Thomsen L. Nonhyperbolic reflection moveout in anisotropic media[J]. Geophysics, 1994, 59(8):1290-1304.
[17]
Pšenčík I, Martins J L. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica, 2001, 45(2):176-199.
[18]
Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(3):C19-C29.
Meng Q S, He Q D, Wang D L. Study on P,SV-wave features in homogeneous transversely isotropic media[J]. Journal of Changchun University of Science and Technology, 2002, 32(4):378-381.
[20]
Hao Z T, Yao C, Wang X. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media[J]. Progress in Geophysics, 2006, 21(2):524-530.
Li L. Phase velocity,group velocity,and ray parameters in transversely isotropic media[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):334-337.
[22]
Farra V, Pšenčík I. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry[J]. Studia Geophysica et Geodaetica, 2016, 60(3):403-418.
[23]
Ding P B, Di B R, Wang D, et al. P- and S-wave velocity and anisotropy in saturated rocks with aligned cracks[J]. Wave Motion, 2018, 81:1-14.
Chen L, Huang J P, Wang Z Y, et al. Seismic numerical simulation and reverse time migration with adaptive variable-grid and compact difference method[J]. Oil Geophysical Prospecting, 2023, 58(3):641-650.
Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
[27]
Yan X S, Zhang M Z, Wu Q H. Big-data-driven pre-stack seismic intelligent inversion[J]. Information Sciences, 2021, 549:34-52.
Chen Z G, Liu L S, Liu Y Q, et al. Thin-sandstone reservoir prediction in coal-bearing strata[J]. Oil Geophysical Prospecting, 2016, 51(S1):52-57.
[29]
Pan X P, Zhang G Z. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model[J]. Geophysics, 2019, 84(1):R85-R98.
[30]
乔汉青. 基于改进粒子群算法的横波速度预测方法研究[D]. 长春: 吉林大学, 2017.
[30]
Qiao H Q. Shear wave velocity prediction method based on improved particle swarm algorithm[D]. Changchun: Jilin University, 2017.
[31]
Li Q, Wang W. AVO inversion in orthotropic media based on SA-PSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8903-8912.
Zhang J, Chen X Q, Xing L, et al. Application of particle swarm optimization in prestack elastic impedance inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(3):353-360.
Li Y L, Wang S Q, Chen Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22):1-12.
doi: 10.3778/j.issn.1002-8331.2006-0291
Zhang P F, Zhang S H. Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1014-1020.
[36]
Zhang F, Zhang T, Li X Y. Seismic amplitude inversion for the transversely isotropic media with vertical axis of symmetry[J]. Geophysical Prospecting, 2019, 67(9):2368-2385.
doi: 10.1111/1365-2478.12842
Wu D K, Zhang B Q, Dai Y, et al. Seismic identification methods for gas and water layers and their application[J]. Natural Gas Industry, 2011, 31(12):54-58.
[38]
Quakenbush M, Shang B, Tuttle C. Poisson impedance[J]. The Leading Edge, 2006, 25(2):128-138.
[39]
Rutherford S R, Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics, 1989, 54(6):680-688.
[40]
Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for Marmousi[J]. The Leading Edge, 2006, 25(2):156-166.