E-mail Alert Rss
 

物探与化探, 2023, 47(3): 547-562 doi: 10.11720/wtyht.2023.1464

“2022年重磁方法理论及应用研究专题研讨会”专栏

重磁场二度体边缘深度反演研究进展

王万银,1,2,3,4, 罗新刚,1,2,3,4,5

1.长安大学 重磁方法技术研究所,陕西 西安 710054

2.长安大学 地质工程与测绘学院,陕西 西安 710054

3.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054

4.海洋油气勘探国家工程研究中心,北京 100028

5.Department of Earth Sciences, Memorial University of Newfoundland, Newfoundland A1B3X5

Research on edge depth inversion of 2D geological body based on gravity and magnetic field

WANG Wan-Yin,1,2,3,4, LUO Xin-Gang,1,2,3,4,5

1. Institute of Gravity and Magnetic Technology, Chang'an University, Xi'an 710054, China

2. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China

3. Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an 710054, China

4. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

5. Department of Earth Sciences, Memorial University of Newfoundland, Newfoundland A1B3X5, Canada

通讯作者: 罗新刚(1991-),男,博士研究生,研究方向为重、磁方法理论及应用。Email:lxg_chd@163.com

第一作者: 王万银(1962-),男,博士,教授,博士生导师,主要从事重、磁位场理论及应用研究和教学工作。Email:wwy7902@chd.edu.cn

责任编辑: 王萌

收稿日期: 2022-09-21   修回日期: 2023-03-22  

基金资助: 国家重点研发计划项目“航空地球物理综合处理解释方法研究及软件开发”(2017YFC0602202)
中央高校基本科研业务费专项资金——长安大学优秀博士学位论文培育资助项目

Received: 2022-09-21   Revised: 2023-03-22  

摘要

地质体边缘深度对重磁位场勘探半定量解释起着至关重要的作用。目前主要的地质体边缘深度反演方法有沃纳(Werner)反褶积法、解析信号振幅法(ASA)、局部波数法(local wave-number)、Tilt-depth法、欧拉(Euler)反褶积法和曲率属性(curvature attributes)反演法。这几类方法都存在解的筛选问题、稳定性问题和适应性问题。本文主要对不同类型数据和模型的适应性问题进行研究,基本原理分析和模型试算结果表明:沃纳反褶积方法和欧拉反褶积方法适用的数据源类型最多,曲率属性适用的数据源类型次之,Tilt-depth最少;沃纳反褶积方法、欧拉反褶积方法和曲率属性方法能够适应较多的模型,Tilt-depth能够适应的模型最少。对于重力数据,垂向一阶导数的解析信号振幅作为数据源适用于所有方法。对于磁力数据,解析信号振幅作为数据源适用于所有方法。同时,建议其他学者在使用这些方法反演二度体边缘深度时,遵循以下原则:反演方法推荐优先使用沃纳反褶积,其次是曲率属性和欧拉反褶积。沃纳反褶积方法和欧拉反褶积方法的重力数据源推荐使用垂向一阶导数的水平导数,磁力数据源推荐使用水平导数。曲率属性方法的重力数据源推荐使用垂向一阶导数的解析信号振幅,磁力数据源推荐使用解析信号振幅。另外,基于以上的研究结论,对边缘深度反演中解的筛选问题、稳定性问题和适应性问题在未来的研究方向中给出了一些建议。

关键词: 二度体; 边缘深度; 解的筛选; 稳定性; 适应性

Abstract

The edge depth of geological body plays a crucial role in the semi-quantitative interpretation of gravity and magnetic potential field exploration. At present, the main inversion methods of geological body edge depth mainly include Werner deconvolution method, analytical signal amplitude method, local wave number method, Tilt-depth method, Euler deconvolution method and curvature attribute inversion method. These methods all have problems of solution selection, stability and adaptability. This paper mainly studies the adaptability of different types of data and models. Through basic principle analysis and model test, the results show that Werner deconvolution method and Euler deconvolution method are applicable to the most types of data sources, followed by curvature attribute, and Tilt-depth is the least; Werner deconvolution method, Euler deconvolution method and curvature attribute methods can adapt to many models, the Tilt-depth is least. For gravity data, the analytical signal amplitude of the first vertical derivative as the data source is applicable to all methods. For magnetic data, the analytical signal amplitude as data source is applicable to all methods. At the same time, it is suggested that other scholars should follow the following principles when using these methods to invert the edge depth of the two-dimensional body: It is recommended that Werner deconvolution is preferred, followed by curvature attribute and Euler deconvolution. The gravity data source of Werner deconvolution method and Euler deconvolution method is recommended to use the horizontal derivative of the first vertical derivative, and the magnetic data source is recommended to use the horizontal derivative. The gravity data source of curvature attribute method is recommended to use the analytical signal amplitude of the first vertical derivative, and the magnetic data source is recommended to use the analytical signal amplitude. In addition, based on the above research conclusions, some suggestions on the future research directions of the solution screening, stability and adaptability of the edge depth inversion are given.

Keywords: two-dimensional body; edge depth; solution selection; stability; adaptability

PDF (8058KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王万银, 罗新刚. 重磁场二度体边缘深度反演研究进展[J]. 物探与化探, 2023, 47(3): 547-562 doi:10.11720/wtyht.2023.1464

WANG Wan-Yin, LUO Xin-Gang. Research on edge depth inversion of 2D geological body based on gravity and magnetic field[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 547-562 doi:10.11720/wtyht.2023.1464

0 引言

重磁勘探是以不同岩、矿石之间物理性质的差异(密度、磁性等)为基础,基于在不同地质体边界处存在着明显的密度或磁性差异,因此可以根据重、磁异常来推断地质体边界的空间位置,而地质体边缘的水平位置和深度作为其中的一部分,对重磁勘探半定量解释起着至关重要的作用。目前地质体边缘深度反演方法主要包括沃纳(Werner)反褶积法、解析信号振幅法(ASA)、局部波数法(local wave-number)、Tilt-depth法、欧拉(Euler)反褶积法和曲率属性法(curvature attributes)。这些方法依据的理论模型主要可分为2大类:台阶类和点源类。其他的一些边缘深度反演方法都是在这些方法的基础上发展起来的,如Tilt-Euler[1]和An-Euler[2]。Tilt-Euler方法是将倾斜角(Tilt angle)和欧拉反褶积方法结合起来反演地质体的边缘深度;An-Euler方法是将解析信号振幅和欧拉反褶积方法结合起来反演地质体的边缘深度。

台阶类方法的理论模型为向下无限延深的台阶,主要包括沃纳反褶积法、解析信号振幅法、局部波数法、Tilt-depth法。沃纳反褶积方法最早由Werner[3]提出,该方法通过对向下无限延深倾斜台阶的磁异常水平导数进行移项整理,再根据多个观测点的数据建立线性方程组,求解方程组进而得到倾斜台阶的边缘深度。1971年Hartman等[4]将该方法应用到了实际资料中。1993年Hansen等[5]将沃纳反褶积法推广到多源场中,并对实际资料进行了处理,取得了较好的结果。之后许多学者对该方法的稳定性和适应性进行了改进,并取得了一定的效果。解析信号振幅法[2,6-13]和局部波数法[14-17]与沃纳反褶积法求解边缘深度的原理是相同的,但输入数据分别为解析信号振幅和局部波数,并且前2种方法所要求的函数形式均满足沃纳反褶积的函数。Tilt-depth方法[1,18-20]要求的理论模型为垂直磁化的铅垂台阶,其原理是求取磁异常垂向导数与水平导数比值,利用该比值的反正切值等于45°时,水平位置距离铅垂台阶边缘的距离与场源深度相等的特性来得到场源的位置参数。2007年Salem等[20]提出了运用Tilt-depth方法研究地质体边缘深度,得出了比较理想的效果。相比前3种方法,由于Tilt-depth方法理论模型为铅垂台阶,所以该方法的适用性较弱。总的来说,该类方法都存在着解的筛选、稳定性和适应性问题。

点源类方法的理论模型为点源,主要包括欧拉反褶积法和曲率属性法。欧拉反褶积法原理是基于点磁源的磁异常满足欧拉方程,通过多点数据建立方程组,通过求解方程组得到场源的位置[21-28]。1982年Thompson[21]在磁测数据的处理中引入了欧拉奇次方程,利用磁剖面数据,借助计算机辅助技术进行地质体场源的深度估计。2003年和2011年Salem等[1]和张季生等[13]将欧拉方程与解析信号振幅结合起来,反演磁性体的位置参数。后续又有很多学者对此方法进行了改进,增强了方法的稳定性。曲率属性深度估算的基本思想是特定函数在场源上方取得峰值,根据特定函数在峰值处的曲率计算场源的位置参数。曲率属性应用于场源水平位置及深度估算是近些年来发展起来的,目前的应用还不够广泛,主要有Hansen等[29]和Phillips等[30]学者利用位场数据的曲率特征估计线性构造的水平位置和深度。2008年刘金兰[31]将归一化总水平导数垂向导数(NVDR-THDR)边缘识别方法引入到曲率属性反演方法中,对反演结果解的筛选起到了较好的效果。该类方法虽然理论模型为点源模型,但是由于其本质上要求的是输入数据的函数形式,而倾斜台阶的部分重、磁异常导数与点源异常的函数形式是相同的,因此该类方法也可用于边缘深度反演中。该类方法也存在着解的筛选、稳定性和适应性问题,并且在反演过程中还需要已知构造指数,而构造指数是与场源形状相关的量,在实际资料处理中,场源的形状是很难获得的。

总体上,这几类方法都存在着解的筛选、稳定性和适应性问题。目前,解的筛选问题最常用的是利用边缘识别方法约束边缘位置[31],或者利用向上延拓剔除坏点[17];稳定性问题是通过滤波方法压制数据的噪声,提高解的稳定性,但参数的选择难度较大,如果滤波参数选择不合适,容易造成精度的损失;适应性问题包括模型适应性和数据适应性,目前相关研究较少。本文主要对不同类型数据和模型的适应性问题进行研究,对比了各种边缘深度反演方法对不同输入数据类型和模型反演结果的优缺点,并给出了应用研究中需要注意的一些问题。最后将各种方法应用到实际资料处理中验证了方法的有效性。

1 基本原理

1.1 台阶类边缘深度反演方法研究现状及问题

台阶类边缘深度反演方法都是基于向下无限延深台阶(ζ2>>ζ1)磁异常的一阶导数、解析信号振幅等来构造的,因此本文先给出有关的正演公式。

向下无限延深台阶(ζ2>>ζ1)(图1)磁异常的正演公式为[33]:

ΔT(x,z)≈ μ04πmxz·Vxz(x,z)+mzz·Vzz(x,z),

图1

图1   倾斜台阶示意

Fig.1   Schematic diagram of inclined step


式中:mxz=(txMz+tzMx),txtz为磁化方向的方向余弦;mzz=(tzMz-txMx),MxMz分别为磁化强度在x轴和z轴的投影。

Vxz=sin2α·ln ζ2-z2+(x-ξ1)+(ζ2-ζ1)cotα)2ζ1-z2+(x-ξ1)2- sin2α·arctan (ζ2-ζ1)(x-ξ1)-ζ1-zcotα(x-ξ1)2+(x-ξ1)(ζ2-ζ1)cotα+ζ1-zζ2-z,
Vzz=sinαcosα·ln ζ2-z2+(x-ξ1)+(ζ2-ζ1)cotα)2ζ1-z2+(x-ξ1)2+ 2sin2α·arctan (ζ2-ζ1)(x-ξ1)-ζ1-zcotα(x-ξ1)2+(x-ξ1)(ζ2-ζ1)cotα+ζ1-zζ2-z

式中:ξ1ξ2分别为台阶顶面边缘在水平线投影的x坐标,ζ1ζ2分别为顶面和底面的z坐标,倾斜面和底面的夹角为α

ζ2>>ζ1,对台阶磁力异常有:

HDR(x,z)= ΔTx,zxμ04π2mzzsin2α-mxzsin2αζ1-z-2mxzsin2α+mzzsin2αx-ξ1ζ1-z2+x-ξ12,
VDR(x,z)= ΔTx,zzμ04π2mzzsin2α-mxzsin2αx-ξ1+mzzsin2α+2mxzsin2αζ1-zζ1-z2+x-ξ12,
ASA(x,z)= ΔTx2+ΔTz2μ0sinα4πMx2+Mz22(ξ1-x)2+(ζ1-z)2,
k(x,z)= 2ΔTxzΔTx-2ΔTx2ΔTzΔTx2+ΔTz2(ζ1-z)(ξ1-x)2+(ζ1-z)2

式中:HDR为水平一阶导数;VDR为垂向一阶导数;ASA为解析信号振幅;k为局部波数。

为了将这些方法应用到重力位场中,根据重磁位泊松公式,应当对重力异常先求取垂向一阶导数,然后再对其求取二阶导数以及一阶垂向导数的解析信号振幅。一侧无限延伸台阶重力异常的正演公式为[33]:

Δgx,z=Gσ πζ-z+sin2α·[x-ξ1-ζ1-zcotα]·lnζ-z2+[(x-ξ1)+(ζ-ζ1)cotα]2+2ζ-zarctan(x-ξ1)+(ζ-ζ1)cotαζ-z+sin2α·[x-ξ1-ζ1-zcotα]·arctan(x-ξ1)-ζ1-zcotαζ-z+[(x-ξ1)+(ζ-ζ1)cotα)]cotαζ1ζ2,

式中:G为万有引力常数;σ为倾斜台阶的密度。

ζ2>>ζ1,对倾斜台阶重力异常有

HDR=Δgx,zx=Gσsin2α·lnζ2-z2+(x-ξ1)+(ζ2-ζ1)cotα)2ζ1-z2+(x-ξ1)2-sin2α·arctan(ζ2-ζ1)(x-ξ1)-ζ1-zcotα(x-ξ1)2+(x-ξ1)(ζ2-ζ1)cotα+ζ1-zζ2-z,VDR=Δgx,zz=Gσsinαcosα·lnζ2-z2+(x-ξ1)+(ζ2-ζ1)cotα)2ζ1-z2+(x-ξ1)2+2sin2α·arctan(ζ2-ζ1)(x-ξ1)-ζ1-zcotα(x-ξ1)2+(x-ξ1)(ζ2-ζ1)cotα+ζ1-zζ2-z,
VDR-HDR(x,z)= 2Δgx,zxz≈Gσ 2sin2αζ1-z-sin2α(x-ξ1)ζ1-z2+(x-ξ1)2,
VDR-VDR(x,z)= 2Δgx,zz2≈Gσ 2sin2α(x-ξ1)+sin2αζ1-zζ1-z2+(x-ξ1)2,
VDR-ASA(x,z)= VDR(x,z)x2+VDR(x,z)z2≈G σsinα 2(ξ1-x)2+(ζ1-z)2,
VDR-k(x,z)= 2VDRxzVDRx-2VDRx2VDRzVDRx2+VDRz2(ζ1-z)(ξ-x)2+(ζ1-z)2

式中:VDR-HDR为垂向一阶导数的水平导数;VDR-VDR为垂向二阶导数;VDR-ASA为垂向一阶导数的解析信号振幅;VDR-k为垂向一阶导数的局部波数。

这类方法的反演原理分述如下:

1)沃纳反褶积法。沃纳反褶积该方法最早由Werner[3]提出,理论模型为向下无限延深的倾斜台阶(ζ2>>ζ1),由式(3)可知其磁异常水平导数(HDR)表达式为:

HDR(x,z)≈- μ04π(2mxzsin2α+mzzsin2α)(x-ξ1)+(mxzsin2α-2mzzsin2α)ζ1-zζ1-z2+(x-ξ1)2,

式(7)可以写成

HDR(x,z)= A(ξ1-x)+B(ζ1-z)(ξ1-x)2+(ζ1-z)2,

式(8)展开为:

c0+c1x+c2HDR(x,z)+c3xHDR(x,z)=x2HDR(x,z),

式中:c0=1+B(ζ1-z);c1=-A;c2=-ξ12-(ζ1-z)2;c3=2ξ1

根据ξ1ζ1与系数c2,c3的关系,可得

ξ1=0.5c3,ζ1-z= -c2-0.25c32

因此,根据4个或以上数据观测点,利用式(9)建立线性方程组求解即可得到二度体倾斜台阶深度。

解析信号振幅法和局部波数法原理与沃纳反褶积法的原理相同,只不过输入的数据形式分别是解析信号振幅和局部波数,而且满足这2种方法的输入数据形式必然也满足沃纳反褶积法,因此其原理不在此赘述。

2)Tilt-depth。Miller和Singh[18]将解析信号相位概念引入到边缘识别,称为倾斜角(Tilt angle)方法,其计算公式为

θ(x,z)=arctan ΔT/zΔT/x,

式中:∂ΔT/z为位场ΔT(x,z)的垂向导数;∂ΔT/x为位场ΔT(x,z)的水平导数。

Salem等[2]提出了利用Tilt-depth方法来研究地质体边缘深度,进一步丰富了斜导数方法,反演效果也比较理想。对于垂直磁化的铅垂台阶有:

ΔTx= μ0M2π(ζ1-z)(ξ1-x)2+(ζ1-z)2, ΔTz= μ0M2π(ξ1-x)(ξ1-x)2+(ζ1-z)2

ΔTz除以式ΔTx后,求其反正切,即得出Tilt-depth的理论公式:

θ(x,z)=arctan T/zT/x=arctan (ξ1-x)(ζ1-z),

显然θπ4,(ξ1-x)的值可与埋藏深度(ζ1-z)对应起来。

Tilt-depth法的理论模型为垂直向下无限延深的铅垂台阶。同时对比倾斜台阶的重磁力异常各阶导数的计算公式,可知只有当倾斜台阶变为直立台阶并垂直磁化时,化极磁力异常和重力数据垂向一阶导数(VDR)满足该方法。

综上,沃纳反褶积方法、解析信号振幅法、局部波数法求解二度体边缘深度的原理基本相同,理论模型都为倾斜台阶,只是输入数据的形式有所差别,沃纳反褶积方法和解析信号振幅法所使用的是一阶导数,局部波数使用的是二阶导数。统称这3类方法为沃纳反褶积类方法,同时对比倾斜台阶的重磁力异常各阶导数的计算公式,可知满足该类方法的输入数据类型见表1。对于Tilt-depth方法,其所适用的模型是铅垂台阶,适用的数据类型为化极磁力异常和重力数据垂向一阶导数(VDR)。另外,这几种方法存在的最大问题是解的适应性、稳定性和筛选问题。针对适应性问题,主要是由于满足这几类方法的输入数据类型比较多(水平导数、垂向导数、解析信号振幅等),不同输入类型数据反演结果的优劣性以及在具体使用这些方法时该如何选择输入数据等问题前人研究较少。

表1   沃纳反褶积方法的输入数据类型

Table 1  Input data types of Werner deconvolution class methods

输入数据类型
重力VDR-HDRVDR-VDRVDR-ASA2VDR-k
磁力HDRVDRASA2k

新窗口打开| 下载CSV


1.2 点源类边缘深度反演方法研究现状及问题

这类方法的原理都是基于点源类模型磁异常及其一阶导数、解析信号振幅等提出的,但在实际应用过程中,一般使用水平圆柱体来表示二度体点源,下面简单介绍一下这些量的计算公式。

无限延伸水平圆柱体(图2)磁力异常正演公式为[33]:

ΔT(x,z)≈ μ04πmxz·Vxz(x,z)+mzz·Vzz(x,z),

式中:mxz=(txMz+tzMx),txtz为磁化方向的方向余弦;mzz=(tzMz-txMx),MxMz为磁化强度在x轴和z轴的投影。

Vxz=4(ξ-x)(ζ-z)(ξ-x)2+(ζ-z)22, Vzz=2(ζ-z)2-(ξ-x)2(ξ-x)2+(ζ-z)22

式中:ξ为水平圆柱体中心的x坐标;ζ为水平圆柱体中心的z坐标;R为水平圆柱体横截面半径。

图2

图2   水平圆柱体示意

Fig.2   Diagram of horizontal cylinder


对无限延伸水平圆柱体的磁力异常有:

HDR(x,z)=ΔTx,zx
=μ0R2mxz·(ζ-z)3(ξ-x)2-(ζ-z)2(ξ-x)2+(ζ-z)23+mzz·(ξ-x)3(ζ-z)2-(ξ-x)2(ξ-x)2+(ζ-z)23,
VDR(x,z)=ΔTx,zz
=μ0R2mxz·(ξ-x)3(ζ-z)2-(ξ-x)2(ξ-x)2+(ζ-z)23-mzz·(ζ-z)3(ξ-x)2-(ζ-z)2(ξ-x)2+(ζ-z)23,
ASA(x,z)=ΔTx2+ΔTz2
=μ0R2Mx2+Mz21(ξ-x)2+(ζ-z)23/2,
k(x,z)=θ(x,z)x=2ΔTxzΔTx-2ΔTx2ΔTzΔTx2+ΔTz2
= 3(ζ-z)(ξ-x)2+(ζ-z)2

式中:HDR为水平一阶导数;VDR为垂向一阶导数;ASA为解析信号振幅;k为局部波数。

同样,为了将这些方法应用到重力位场中,下面介绍无限延伸水平圆柱体的重力异常的正演公式为:

Δgx,z=GσπR22(ζ-z)(ξ-x)2+(ζ-z)22,

式中:G为万有引力常数;σ为倾斜台阶的密度。

水平无限延伸的圆柱体的重力异常一阶导数为

HDR=Δgx,zx
=4πR2Gσ(ξ-x)(ζ-z)(ξ-x)2+(ζ-z)22,
VDR=Δgx,zz
=2πR2Gσ(ζ-z)2-(ξ-x)2(ξ-x)2+(ζ-z)22,
ASA(x,z)=g(x,z)x2+g(x,z)z2
=2GσπR21(ξ-x)2+(ζ-z)2,
k(x,z)=θ(x,z)x=2ΔgxzΔgx-2Δgx2ΔgzΔg(x,z)x2+Δg(x,z)z2
= 2(ζ-z)(ξ-x)2+(ζ-z)2

水平无限延伸的圆柱体反演原理为分述如下。

1)欧拉反褶积法。考虑一个位于(ξ,ζ)的点磁源,那么点(x,z)的总磁异常为

ΔT(x,z)= A[(x-ξ)2+(z-ζ)2]N/2,

式中:N为常数,为构造指数,与场源的形状有关;A为常数与磁化强度有关。

其必然满足

(x-ξ) ΔTx+(z-ζ) ΔTz=-NΔT,

该式中未知量为ξζN,其中坐标(ξ,ζ)表示等效点源的深度与水平位置,N表示构造指数,是与场源形状有关的常数。

通过给出3个不同点的ΔTΔTxΔTz的值,就可以构成含未知量ξζN的3个线性方程,原则上可以通过解这3个线性方程得出未知数ξζN。但通常是用多个点建立一个超定方程组,利用最小二乘法来求解。显然特征点位置参数与模型的磁化倾角无关。

实际对于式(18),其各阶导数、总水平导数、解析信号振幅及其同阶次导数的线性组合也满足式(19)[34],因此使用该方法的过程中不限于磁异常本身,还应考虑其各阶导数。

欧拉反褶积法是基于点源模型的理论提出来的,但实际上要求输入数据的函数形式。因此在边缘深度反演方面该方法也是适用的,即通过将倾斜台阶的重、磁异常及其各阶导数与无限延伸水平圆柱体的磁异常及其各阶导数进行对比,满足该方法的输入数据类型见表2

表2   欧拉反褶积方法的输入数据类型

Table 2  Input data types of the Euler deconvolution method

输入数据类型
重力VDR-HDRVDR-VDRVDR-ASAVDR-k
磁力HDRVDRASAk

新窗口打开| 下载CSV


2)曲率属性。曲率属性法是基于特定函数曲率来估算场源的深度,即特定函数在场源上方取得峰值。剖面计算的公式为:

S(x,z)= α(x-ξ)2+(z-ζ)2N/2,

式中:(ξ,ζ)表示场源位置;(x,z)表示观测点;αN为常数。实际上,式(20)与点磁源的磁异常表达式相同。

Roberts[32]给出了任何一维(1D)函数 F(x)的曲率为:

K(x)= d2F/dx2[1+(dF/dx)2]3/2,

x=ξ处取得峰值的特定函数 S(x,z)的曲率为:

K(ξ,z)=- 2NS(ξ,z)(z-ζ)2,

对于剖面数据,若z轴向下为正,场源深度和曲率的关系为:

ζ-z= -2NS(ξ,z)K(ξ,z),

当已知场源的水平位置和构造指数N时,即可获得场源深度。

曲率属性方法反演异常体边缘深度时对输入数据函数形式同样具有要求,通过对比倾斜台阶的重磁力异常各阶导数的计算公式,可知满足该方法的磁力异常输入数据类型为解析信号振幅(ASA)和局部波数(k)。重力异常输入数据类型为重力异常垂向一阶导数的解析信号振幅(VDR-ASA)和局部波数(VDR-k)。

综上,欧拉反褶积方法和曲率属性法的理论计算模型都为点源,但其方法也适用于边缘深度反演。对于欧拉反褶积法来说,倾斜台阶磁异常的水平导数(HDR)、垂直导数(VDR)、解析信号振幅(ASA)、局部波数(k)均满足该方法;重力异常垂向一阶导数的水平导数(VDR-HDR)、垂向二阶导数(VDR-VDR)、垂向一阶导数的解析信号振幅(VDR-ASA)和垂向一阶导数的局部波数(VDR-k)均满足该方法。对于曲率属性法来说,磁力异常的解析信号振幅(ASA)和局部波数(k)与重力异常垂向一阶导数的解析信号振幅(VDR-ASA)和局部波数(VDR-k)满足该方法。同样的,这几种方法存在的最大问题也是解的筛选、稳定性和适应性问题,其中适应性与台阶类方法存在的问题是相同的。

2 边缘深度反演方法模型试验

为测试各种方法的正确性、稳定性和适应性,本文选择了台阶和无限延伸的水平圆柱体进行模型正确性试验;在倾斜台阶的磁异常中加入了标准差为5 nT、均值为0的高斯噪声,进行各种方法的稳定性试验;利用平行四边形模型进行各种方法的适应性试验。台阶和平行四边形的顶面埋深都是200 m,水平圆柱体中心埋深是200 m(图3)。为了减少多解性,本文在反演过程中使用了边缘识别方法[35-37]对反演结果的水平位置进行了约束。

图3

图3   沃纳反褶积反演倾斜台阶边缘深度

a—磁力异常;b—重力异常

Fig.3   Werner deconvolution inverting edge depth of inclined step

a—magnetic anomaly; b—gravitational anomaly


2.1 正确性试验

本文利用倾斜台阶模型测试沃纳反褶积类方法的正确性。由图3可知在沃纳反褶积类方法反演边缘深度时,对于磁力异常来说其水平导数(HDR)、垂向一阶导数(VDR)、解析信号振幅(ASA)、局部波数(k)均能够较为准确地反演倾斜台阶的边缘深度,其中解析信号振幅(ASA)的反演精度最高,局部波数精度最差;对于重力异常,垂向一阶导数的水平导数(VDR-HDR)、垂向二阶导数(VDR-VDR)、垂向一阶导数的解析信号振幅(VDR-ASA)均能够较为准确地反演倾斜台阶的边缘深度,其中一阶垂向导数的解析信号振幅(VDR-ASA)反演精度最高,垂向一阶导数的局部波数反演误差最大。实际上无论对于磁力异常还是重力异常数据,因为局部波数法使用到高阶导数,从而导致其计算结果不稳定,误差变大。

理论上,边缘深度反演中倾斜台阶的顶面埋深和底面埋深必须满足ζ2>>ζ1,但在具体使用时,并不确定ζ2大于ζ1多少才能满足条件。基于此,本文研究了倾斜台阶厚度与顶面埋深的比值(ζ2-ζ11)与误差的关系(图4),由图4可知,随着倾斜台阶厚度与顶面埋深比值的增大,误差随之减小,当ζ2-ζ11≥3时,误差基本趋于稳定。由于本次模型测试所使用的导数都是在频率域根据异常值换算得到的,并且局部波数法使用到二阶及以上导数,所以其误差出现了较大的波动,但整体规律与沃纳反褶积法和解析信号振幅法一致。因此研究结果表明当ζ2-ζ11≥3时,ζ2>>ζ1的条件就已经满足。本文所选择的模型ζ2-ζ11=4满足该条件。

图4

图4   倾斜台阶厚度和顶面埋深比值与误差百分比关系

Fig.4   Relationship between the ratio of inclined step thickness and top buried depth and error


利用铅垂台阶模型测试Tilt-depth方法的正确性。由图5可知在Tilt-depth方法反演边缘深度时,对于磁力异常来说,化极磁力异常(RTP)的解析信号振幅(ASA)能够反演边缘深度;对于重力异常来说,其垂向一阶导数(VDR)和垂向一阶导数的解析信号振幅(VDR-ASA)能够反演边缘深度。该方法整体上误差较大。

图5

图5   Tilt-depth方法反演倾斜台阶边缘深度

a—磁力异常;b—重力异常

Fig.5   Tilt-depth inverting edge depth of inclined step

a—magnetic anomaly;b—gravitational anomaly


利用无限延伸的水平圆柱体模型测试欧拉反褶积方法的正确性。由图6可知在欧拉反褶积方法反演水平圆柱体中心深度时,对于磁力异常来说,其水平导数(HDR)、垂向一阶导数(VDR)、解析信号振幅(ASA)、局部波数(k)均能够准确地反演水平圆柱体的中心深度;对于重力异常来说,其水平导数(HDR)、垂向一阶导数(VDR)、解析信号振幅(ASA)、局部波数(k)也均能够准确地反演水平圆柱体的中心深度。

图6

图6   欧拉反褶积方法反演倾斜台阶边缘深度

a—磁力异常;b—重力异常

Fig.6   Euler deconvolution inverting edge depth of inclined step

a—magnetic anomaly; b—gravitational anomaly


利用无限延伸的水平圆柱体模型测试曲率属性方法的正确性。由图7可知在曲率属性方法反演水平圆柱体中心深度时,对于磁力异常和重力异常,解析信号振幅(ASA)和局部波数(k)都能够准确反演水平圆柱体中心深度,但局部波数法反演精度低于解析信号振幅。实际上这也是由于局部波数使用到高阶导数所引起的。

图7

图7   曲率属性方法反演倾斜台阶边缘深度

a—磁力异常;b—重力异常

Fig.7   Curvature attribute inverting edge depth of inclined step

a—magnetic anomaly; b—gravitational anomaly


综上,模型正确性试验结果表明各种方法对于本身的理论模型都能够较为准确地反演其场源深度,但对于局部波数法,由于使用到高阶导数,反演结果精度较低,因此在后续稳定性和适应性试验中,对局部波数不做测试。

2.2 稳定性试验

图8a是各方法利用包含噪声(标准差为5 nT,均值为0的高斯噪声)的倾斜台阶磁异常计算的解析信号振幅作为输入数据反演得到的结果,该结果显示所有的方法都受到影响,反演结果不稳定。为了对比各方法的稳定性,对磁异常进行了简单滤波处理,其反演结果如图8b所示,该结果表明沃纳反褶积和曲率属性方法稳定性强,反演结果精度高。

图8

图8   含噪声的倾斜台阶磁异常反演结果

a—未做滤波处理;b—滤波处理

Fig.8   Inversion results of the inclined step from magnetic anomaly with noise

a—without filtering; b—filtering


2.3 适应性试验

在正确性试验中,使用的模型是一侧无限延伸的倾斜台阶,但在实际应用中,这种模型是不存在的,因此本文利用平行四边形模型对这些方法进行适应性测试。适应性试验主要包括2个方面:数据适应性问题和模型适应性问题。

图9可知在沃纳反褶积类方法反演平行四边形边缘深度时,在数据适应性方面,磁力异常水平导数(HDR)、垂向一阶导数(VDR)、解析信号振幅(ASA)均能够较为准确地反演平行四边形两侧边缘的深度,几种反演方法的精度相近;重力异常垂向一阶导数的水平导数(VDR-HDR)、垂向二阶导数(VDR-VDR)、垂向一阶导数的解析信号振幅(VDR-ASA)也均能够较为准确地反演平行四边形两侧边缘的深度,其中一阶垂向导数的水平导数(VDR-HDR)反演精度最高。在模型适应性方面,该方法能够较好地适应此模型。

图9

图9   沃纳反褶积类方法反演平行四边形边缘深度

a—磁力异常;b—重力异常

Fig.9   Werner deconvolution inverting edge depth of parallelogram

a—magnetic anomaly; b—gravitational anomaly


图10可知在Tilt-depth方法反演平行四边形边缘的深度时,在数据适应性方面,只有磁力异常解析信号振幅(ASA)和重力异常垂向一阶导数的解析信号振幅(VDR-ASA)适应该方法。整体上该方法的反演精度相对较低,并且在模型适应性方面效果较差。

图10

图10   Tilt-depth方法反演平行四边形边缘深度

a—磁力异常;b—重力异常

Fig.10   Tilt-depth inverting edge depth of parallelogram

a—magnetic anomaly; b—gravitational anomaly


图11可知在欧拉反褶积方法反演平行四边形边缘深度时,在数据适应性方面,磁力异常水平导数(HDR)、垂向一阶导数(VDR)、解析信号振幅(ASA)均能够较为准确地反演平行四边形两侧边缘深度,几种反演方法的精度相近;重力异常垂向一阶导数的水平导数(VDR-HDR)、垂向二阶导数(VDR-VDR)、垂向一阶导数的解析信号振幅(VDR-ASA)均能够较为准确地反演平行四边形两侧边缘深度,几种反演方法的精度也较为相近。在模型适应性方面,该方法能够较好地适应此模型。

图11

图11   欧拉反褶积方法反演平行四边形边缘深度

a—磁力异常;b—重力异常

Fig.11   Euler deconvolution inverting edge depth of parallelogram

a—magnetic anomaly; b—gravitational anomaly


图12可知在曲率属性方法反演边缘深度时,在数据适应性方面,磁力异常解析信号振幅(ASA)和重力异常垂向一阶导数的解析信号振幅(VDR-ASA)适应该方法。在模型适应性方面,该方法也能够较好地适应此模型。

图12

图12   曲率属性方法反演平行四边形边缘深度

a—磁力异常;b—重力异常

Fig.12   Curvature attribute inverting edge depth of parallelogram

a—magnetic anomaly; b—gravitational anomaly


综上,适应性测试结果表明,沃纳反褶积类方法和欧拉反褶积方法适用的数据源类型最多,曲率属性次之,Tilt-depth方法最少;沃纳反褶积类方法、欧拉反褶积方法和曲率属性方法能够适应较多的模型,Tilt-depth方法最少。对于重力数据,垂向一阶导数的解析信号振幅作为数据源适用于所有方法。对于磁力数据,解析信号振幅作为数据源适用于所有方法。

另外,在适用性试验中,为了研究平行四边形宽度对反演结果的影响,本文也做了一些比较(图13),结果表明随着平行四边形模型宽度的减小,沃纳反褶积对模型的适用性最好,曲率属性方法次之。

图13

图13   变宽度平行四边形边缘深度反演结果

a—平行四边形宽度:-500~500 m;b—平行四边形宽度:-300~300 m;c—平行四边形宽度:-100~100 m;d—平行四边形宽度:-50~50 m

Fig.13   The edge depth inversion results of the variable-width parallelogram

a—parallelogram width:-500~500 m; b—parallelogram width:-300~300 m;c—parallelogram width:-100~100 m; d—parallelogram width:-50~50 m


3 实际资料处理

为了对比各种方法的有效性和优缺点,本文选择南海北部珠江口盆地内部的1条NW向剖面(图14图15)进行磁力异常和重力异常边缘深度反演。

图14

图14   珠江口盆地化极磁力异常

a—平面;b—剖面

Fig.14   Magnetic anomaly of reduction to the pole in the Pearl River Mouth Basin

a—plan view; b—section view


图15

图15   珠江口盆地卫星测高重力异常

a—平面;b—剖面

Fig.15   Satellite altimetry gravity anomaly in the Pearl River Mouth Basin

a—plan view; b—section view


南海北部位于华南地块、印支地块和菲律宾海(太平洋)板块的交汇部位,受3大地块的相互影响,该地区断裂类型多,既有古老地块缝合线断裂带、板块俯冲断裂带,也有地块滑动断裂带以及地块内部的走滑、挤压和扩张断裂带。

本文利用该区域内1条剖面的磁力异常解析信号振幅和重力异常垂向一阶导数的解析信号振幅反演了断裂[38]的视深度(图16)。反演结果表明第1个构造边缘和第2个构造边缘视深度较浅,第3个构造边缘和第4个构造边缘视深度较深,这与该地区的地质特征吻合,自北西向南东莫霍面深度[39]逐渐变浅,热活动逐渐增强,断裂深度也在随之增大。另外反演结果也显示(表3),沃纳反褶积和曲率属性方法反演的深度和边界位置与实际地质特征比较吻合。对比重、磁异常反演结果,除第1个构造边缘深度,沃纳反褶积和曲率属性方法反演结果也较为相近,说明这2种方法反演结果较为稳定。欧拉反褶积反演结果对噪声比较敏感,反演结果较差,Tilt-depth方法结果最差。

图16

图16   珠江口盆地边缘深度反演结果

a—磁力异常;b—重力异常

Fig.16   The edge depth inversion results in the Pearl River Mouth Basin

a—magnetic anomaly;b—gravity anomaly


表3   珠江口盆地重、磁力异常剖面边缘深度反演结果

Table 3  The edge depth inversion results of thegravity and magnetic anomaly profile in the Pearl River Mouth Basin

反演深度/km
反演方法第1个构造边缘第2个构造边缘第3个构造边缘第4个构造边缘
磁剖面重力剖面磁剖面重力剖面磁剖面重力剖面磁剖面重力剖面
沃纳反褶积6.32.55.84.910.513.211.513.8
曲率属性7.24.56.15.912.314.111.515.9
欧拉反褶积2.79.60.40.69.73.35.116.5
Tilt-depth11.511.312.117.935.522.714.8

新窗口打开| 下载CSV


4 结论与建议

通过对边缘深度各方法的总结、分析及模型试算,了解了这些方法的使用条件、优点和缺点。本文得出几点结论和建议。

4.1 结论

1)在数据适应性方面,欧拉反褶积方法和沃纳反褶积方法适用的数据源类型最多,曲率属性次之,Tilt-depth方法最少;在模型适应性方面,沃纳反褶积类方法、欧拉反褶积方法和曲率属性方法能够适应较多的模型,Tilt-depth方法最少。

2)对于重力数据,垂向一阶导数的解析信号振幅作为数据源适用于所有方法,垂向一阶导数的水平导数和垂向二阶导数适用于沃纳反褶积和欧拉反褶积。对于磁力数据,解析信号振幅作为数据源适用于所有方法,水平导数和垂向一阶导数适用于沃纳反褶积和欧拉反褶积。

3)随着倾斜四边形模型宽度的变化,沃纳反褶积对模型的适用性最好,曲率属性方法次之。

4)沃纳反褶积和曲率属性方法稳定性好,反演结果精度高。

基于以上结论,其他学者在使用这些方法反演二度体边缘深度时,应当遵循以下原则:反演方法推荐优先使用沃纳反褶积,其次是曲率属性和欧拉反褶积。沃纳反褶积方法和欧拉反褶积方法的重力数据源推荐使用垂向一阶导数的水平导数;磁力数据源推荐使用水平导数。曲率属性方法的重力数据源推荐使用垂向一阶导数的解析信号振幅,磁力数据源推荐使用解析信号振幅。

4.2 建议

1)边缘深度反演解的筛选问题。在实际应用过程中,目前最常用的方法就是根据具体的地质体目标,利用边缘位置识别方法确定目标体的大致水平位置,进而剔除这些位置邻区以外的点。该方法的问题是解的筛选效果严重依赖于水平位置的准确性。所以未来在解的筛选方面,本文建议从边缘识别方法入手,提出高精度的边缘识别方法。另外,在解的筛选方面还可从位场向上延拓方面着手,利用位场向上延拓后,反演的深度结果呈线性关系的规律剔除坏点。

2)边缘深度反演解的稳定性问题。解决解的稳定性方面最常用的方法是对数据进行滤波,但是滤波的程度很难控制,容易导致反演精度降低。本文建议未来应当研究位场向上延拓方法的滤波效果,因为该方法具有物理意义,既能在反演过程中很好地控制滤波程度,又能尽可能小地减少解精度的损失。

3)边缘深度反演方法的适应性问题。目前关于反演方法适应性研究较少,但该问题严重影响着实际资料的应用效果。因此本文建议学者在使用位场边缘深度反演方法时,应当从数据适应性和模型适应性2个方面进行研究,增强这些方法的应用效果。

参考文献

鲁宝亮, 王万银, 赵志刚, .

南海深部构造特征及其地质意义:来自重磁位场反演的认识

[J]. 地球物理学报, 2018, 61(10):4231-4241.

[本文引用: 1]

Lu B L, Wang W Y, Zhao Z G, et al.

Characteristics of deep structure in the South China Sea and geological implications:Insights from gravity and magnetic inversion

[J]. Chinese Journal of Geophysics, 2018, 61(10):4231-4241.

[本文引用: 1]

Salem A, Ravat D.

A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data

[J]. Geophysics, 2003, 68(6):1952-1961.

DOI:10.1190/1.1635049      URL     [本文引用: 3]

We present a new automatic method of interpretation of magnetic data, called AN‐EUL (pronounced “an oil”). The derivation is based on a combination of the analytic signal and the Euler deconvolution methods. With AN‐EUL, both the location and the approximate geometry of a magnetic source can be deduced. The method is tested using theoretical simulations with different magnetic models placed at different depths with respect to the observation height. In all cases, the method estimated the locations and the approximate geometries of the sources. The method is tested further using ground magnetic data acquired above a shallow geological dike whose source parameters are known from drill logs, and also from airborne magnetic data measured over a known ferrometallic object. In both these cases, the method correctly estimated the locations and the nature of these sources.

Salem A, Williams S, Fairhead D, et al.

Interpretation of magnetic data using Tilt-angle derivatives

[J]. Geophysics, 2008, 73(1):1-10.

[本文引用: 3]

Werner S.

Interpretation of magnetic anomalies at sheet-like bodies

[R]. Sveriges Geologiska Undersok.Ser.C,Arsbok 1953.

[本文引用: 2]

Hartman R R, Teskey D J, Friedberg J L.

A system for rapid digital aeromagnetic interpretation

[J]. Geophysics, 1971, 36(5):891-918.

DOI:10.1190/1.1440223      URL     [本文引用: 1]

In this paper, we describe a system for the collection and interpretation of aeromagnetic data. The great interdependence of the detection instrumentation, the navigation instrumentation, the compilation procedures, and the interpretation techniques is defined. Doppler radar is the basis for aircraft navigation; it drives the recording devices to produce spatial‐domain data. A digital system provides a means for rapid computer interpretation. A distinction is made between data‐processing techniques that aid in interpretation and those that are involved in the actual definition of magnetic anomalies in terms of the horizontal and vertical position of the causative bodies. The computerized interpretation technique described herein is an extension of a technique first described by S. Werner of the Geological Survey of Sweden. Depths are calculated for all geologic events with some elongation, regardless of the events’ strike, dip, and remanent magnetization; and the calculations are valid at any magnetic inclination. Our system is illustrated with model studies and actual examples.

Hansen R O, Simmonds M.

Multiple-source Werner deconvolution

[J]. Geophysics, 1993, 58(12):1792-1800.

DOI:10.1190/1.1443394      URL     [本文引用: 1]

A reformulation of the Werner deconvolution algorithm using the analytic signal is extended to multiple source bodies. The extended algorithm involves solving a linear least‐squares problem; the coefficients so obtained determine a complex polynomial whose roots define the locations and depths of the body contacts. The extended algorithm has been used to map the structure of the Cobb offset zone of the Juan de Fuca Ridge from aeromagnetic data; both the top and bottom of the spreading center basalts can be delineated. Connections between the multiple‐source Werner technique and CompuDepth™ are discussed.

Nabighian M N.

The analytic signal of two-dimensional magnetic bodies with polygonal cross-section its properties and use for automated anomaly interpretation

[J]. Geophysics, 1972, 37(3):507-517.

DOI:10.1190/1.1440276      URL     [本文引用: 1]

This paper presents a procedure to resolve magnetic anomalies due to two‐dimensional structures. The method assumes that all causative bodies have uniform magnetization and a cross‐section which can be represented by a polygon of either finite or infinite depth extent. The horizontal derivative of the field profile transforms the magnetization effect of these bodies of polygonal cross‐section into the equivalent of thin magnetized sheets situated along the perimeter of the causative bodies. A simple transformation in the frequency domain yields an analytic function whose real part is the horizontal derivative of the field profile and whose imaginary part is the vertical derivative of the field profile. The latter can also be recognized as the Hilbert transform of the former. The procedure yields a fast and accurate way of computing the vertical derivative from a, given profile. For the case of a single sheet, the amplitude of the analytic function can be represented by a symmetrical function maximizing exactly over the top of the sheet. For the case of bodies with polygonal cross‐section, such symmetrical amplitude functions can be recognized over each corner of each polygon. Reduction to the pole, if desired, can be accomplished by a simple integration of the analytic function, without any cumbersome transformations. Narrow dikes and thin flat sheets, of thickness less than depth, where the equivalent magnetic sheets are close together, are treated in the same fashion using the field intensity as input data, rather than the horizontal derivative. The method can be adapted straightforwardly for computer treatment.It is also shown that the analytic signal can be interpreted to represent a complex “field intensity,” derivable by differentiation from a complex “potential.” This function has simple poles at each polygon corner. Finally, the Fourier spectrum due to finite or infinite thin sheets and steps is given in the Appendix.

Roest W R, Verhoef J, Pilkingto M.

Magnetic interpretation using the 3D analytic signal

[J]. Geophysics, 1992, 57(1):116-125.

DOI:10.1190/1.1443174      URL     [本文引用: 1]

A new method for magnetic interpretation has been developed based on the generalization of the analytic signal concept to three dimensions. The absolute value of the analytic signal is defined as the square root of the squared sum of the vertical and the two horizontal derivatives of the magnetic field. This signal exhibits maxima over magnetization contrasts, independent of the ambient magnetic field and source magnetization directions. Locations of these maxima thus determine the outlines of magnetic sources. Under the assumption that the anomalies are caused by vertical contacts, the analytic signal is used to estimate depth using a simple amplitude half‐width rule. Two examples are shown of the application of the method. In the first example, the analytic signal highlights a circular feature beneath Lake Huron that has been identified as a possible impact crater. The second example illustrates the continuation of terranes across the Cabot Strait between Cape Breton and Newfoundland in eastern Canada.

胡中栋, 余钦范, 楼海.

三维解析信号法

[J]. 物探化探计算技术, 1995, 17(3):36-42.

[本文引用: 1]

Hu Z D, Yu Q F, Lou H.

3D analytic signal method

[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1995, 17(3):36-42.

[本文引用: 1]

Hsu S K, Sibuet J C, Shyu C T.

High-resolution detection of geologic boundaries from potential-field anomalies:An enhanced analytic signal technique

[J]. Geophysics, 1996, 61(2):373-386.

DOI:10.1190/1.1443966      URL     [本文引用: 1]

A high‐resolution technique is developed to image geologic boundaries such as contacts and faults. The outlines of the geologic boundaries can be determined by tracing the maximum amplitudes of an enhanced analytic signal composed of the nth‐order vertical derivative values of two horizontal gradients and one vertical gradient. The locations of the maximum amplitudes are independent of the ambient potential field. This technique is particularly suitable when interference effects are considerable and/or when both induced and remanent magnetizations are not negligible. The corresponding depth to each geologic boundary can be estimated from the amplitude ratio of the enhanced and the simple analytic signals, which provides a simple estimation Such a method has been applied to magnetic data acquired in the Ilan Plain of Taiwan located at the southwestern end of the Okinawa Trough. The quantitative analysis shows that the underlying geologic boundaries deepen southward and slightly eastward. The enlargement of the Ilan Plain in the direction of the Okinawa Trough and the existence of north‐northwest and west‐northwest trending faults near the city of Ilan reveal a discontinuity between the Okinawa Trough backarc extension and the compressional process in Taiwan.

管志宁, 姚长利.

倾斜板体磁异常总梯度模反演方法

[J]. 地球科学:中国地质大学学报, 1997, 22(1):81-85.

[本文引用: 1]

Guan Z N, Yao C L.

Inversion of the total gradient modulus of magnetic anomaly due to dipping dike

[J]. Earth Science:Journal of China University of Geosciences, 1997, 22(1):81-85.

[本文引用: 1]

Debeglia N, Corpel J.

Automatic 3D interpretation of potential field data using analytic signal derivatives

[J]. Geophysics, 1997, 62(1):87-96.

DOI:10.1190/1.1444149      URL     [本文引用: 1]

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.

Bastani M, Pedersen L B.

Automatic interpretation of magnetic dike parameters using the analytical signal technique

[J]. Geophysics, 2001, 66(2):551-561.

DOI:10.1190/1.1444946      URL     [本文引用: 1]

The analytical signal of the magnetic field is used to automatically determine the source parameters of dikelike structures. The method is particularly useful for interpreting large amounts of data collected during airborne surveys because it makes full use of the high density of data along the flight lines while simultaneously checking for two‐dimensionality and strike directions by searching for coherent signals in neighboring profiles. The maximum horizontal curvature of the amplitude of the analytical signal is used to locate the dikes along a given profile. Tests with synthetic data show that the dike’s horizontal position is resolved accurately. Magnetic data from the Siljan impact structure in Sweden show that the estimated strikes are reliable and that dip, depth, and width estimates are coherent, especially for well‐isolated dikelike structures.

张季生, 高锐, 李秋生, .

欧拉反褶积与解析信号相结合的位场反演方法

[J]. 地球物理学报, 2011, 54(6):1634-1641.

[本文引用: 2]

Zhang J S. Gao R, Li Q S, et al.

A combined Euler and analytic signal method for an inversion calculation of potential data

[J]. Chinese Journal of Geophysics, 2011, 54(6):1634-1641

[本文引用: 2]

Thurston J B, Smith R S.

Automatic conversion of magnetic data to depth,dip,and susceptibility contrast using the SPI (TM) method

[J]. Geophysics, 1997, 62(3):807-813.

DOI:10.1190/1.1444190      URL     [本文引用: 1]

The Source Parameter Imaging (SPI™) method computes source parameters from gridded magnetic data. The method assumes either a 2-D sloping contact or a 2-D dipping thin‐sheet model and is based on the complex analytic signal. Solution grids show the edge locations, depths, dips, and susceptibility contrasts. The estimate of the depth is independent of the magnetic inclination, declination, dip, strike and any remanent magnetization; however, the dip and the susceptibility estimates do assume that there is no remanent magnetization. Image processing of the source‐parameter grids enhances detail and provides maps that facilitate interpretation by nonspecialists. The SPI method tests successfully on synthetic profile and gridded data. SPI maps derived from aeromagnetic data acquired over the Peace River Arch area of northwestern Canada correlate well with known basement structure and furthermore show that the Ksituan Magmatic Arc can be divided into several susceptibility subdomains.

Phillips J D.

Locating magnetic contacts:A comparison of the horizontal gradient,analytic signal,and local wavenumber methods

[J]. Seg Technical Program Expanded Abstracts, 2000, 19(1):2484.

[本文引用: 1]

Pilkington M, Keating P.

Contact mapping from gridded magnetic data—A comparison of techniques

[J]. Exploration Geophysics, 2004, 35(4):306-311.

DOI:10.1071/EG04306      URL     [本文引用: 1]

崔莉, 王万银.

局部波数在磁异常解释应用中的方法技术

[J]. 物探与化探, 2011, 35(6):780-784.

[本文引用: 2]

Cui L, Wang W Y.

The technique for application of local wavenumber to magnetic interpretation

[J]. Geophysical and Geochemical Exploration, 2011, 35(6):780-784.

[本文引用: 2]

Miller H G, Singh V.

Potential field tilt—A new concept for location of potential field sources

[J]. Journal of Applied Geophysics, 1994, 32(2):213-217.

DOI:10.1016/0926-9851(94)90022-1      URL     [本文引用: 2]

Verduzco B, Fairhead J D, Green C M, et al.

The meter reader-New insights into magnetic derivatives for structural mapping

[J]. Leading Edge, 2004, 23(2):116-119.

DOI:10.1190/1.1651454      URL     [本文引用: 1]

Salem A, Williams S, Fairhead J D, et al.

Tilt-depth method:A simple depth estimation method using first-order magnetic derivatives

[J]. Leading Edge, 2007, 26(12):1502-1505.

DOI:10.1190/1.2821934      URL     [本文引用: 2]

Thompson D T.

Euldph—A new technique for making depth estimates from magnetic data

[J]. Geophysics, 1982, 47(1):31-37.

DOI:10.1190/1.1441278      URL     [本文引用: 2]

A method for rapidly making depth estimates from large amounts of magnetic data is described. The technique is based upon Euler’s homogeneity relationship (hence, the acronym EULDPH) and differs from similar techniques which are currently available in that no basic geologic model is assumed. Therefore, EULDPH can be applied in a wider variety of geologic situations than can model‐dependent techniques. The price paid for this increased flexibility is a heavier burden on the interpreter. Successful interpretation of EULDPH results is partially dependent upon the interpreter’s intuitive understanding of the concept of the equivalent stratum and also partially dependent upon experience with model studies. The theoretical basis, the computational algorithm, and applications of EULDPH to model and real data are presented.

Reid A B, Allsop J M, Granser H, et al.

Magnetic interpretation in three dimensions using Euler deconvolution

[J]. Geophysics, 1990, 55(1):80-91.

DOI:10.1190/1.1442774      URL     [本文引用: 1]

Magnetic‐survey data in grid form may be interpreted rapidly for source positions and depths by deconvolution using Euler’s homogeneity relation. The method employs gradients, either measured or calculated. Data need not be pole‐reduced, so that remanence is not an interfering factor. Geologic constraints are imposed by use of a structural index. Model studies show that the method can locate or outline confined sources, vertical pipes, dikes, and contacts with remarkable accuracy. A field example using data from an intensively studied area of onshore Britain shows that the method works well on real data from structurally complex areas and provides a series of depth‐labeled Euler trends which mark magnetic edges, notably faults, with good precision.

Marson I, Klingele E E.

Advantages of using the vertical gradient of gravity for 3D interpretation

[J]. Geophysics, 1993, 58(11):1588-1595.

DOI:10.1190/1.1443374      URL     [本文引用: 1]

Gravity gradiometric data or gravity data transformed into vertical gradient can be efficiently processed in three dimensions for delineating density discontinuities. Model studies, performed with the combined use of maxima of analytic signal and of horizontal gradient and the Euler deconvolution techniques on the gravity field and its vertical gradient, demonstrate the superiority of the latter in locating density contrasts. Particularly in the case of interfering anomalies, where the use of gravity alone fails, the gravity gradient is able to provide useful information with satisfactory accuracy.

Keating P B.

Weighted Euler deconvolution of gravity data

[J]. Geophysics, 1998, 63(5)1595-1603.

DOI:10.1190/1.1444456      URL     [本文引用: 1]

Euler deconvolution is used for rapid interpretation of magnetic and gravity data. It is particularly good at delineating contacts and rapid depth estimation. The quality of the depth estimation depends mostly on the choice of the proper structural index and adequate sampling of the data. The structural index is a function of the geometry of the causative bodies. For gravity surveys, station distribution is in general irregular, and the gravity field is aliased. This results in erroneous depth estimates. By weighting the Euler equations by an error function proportional to station accuracies and the interstation distance, it is possible to reject solutions resulting from aliasing of the field and less accurate measurements. The technique is demonstrated on Bouguer anomaly data from the Charlevoix region in eastern Canada.

Mushayandebvu M F, Driel P V, Reid A B, et al.

Magnetic source parameters of two-dimensional structures using extended Euler deconvolution

[J]. Geophysics, 2001, 66(3):814-823.

DOI:10.1190/1.1444971      URL     [本文引用: 1]

The Euler homogeneity relation expresses how a homogeneous function transforms under scaling. When implemented, it helps to determine source location for particular potential field anomalies. In this paper, we introduce an additional relation that expresses the transformation of homogeneous functions under rotation. The combined implementation of the two equations, called here extended Euler deconvolution for 2-D structures, gives a more complete source parameter estimation that allows the determination of susceptibility contrast and dip in the cases of contact and thin‐sheet sources. This allows for the structural index to be correctly chosen on the basis of a priori knowledge about susceptibility and dip. The pattern of spray solutions emanating from a single source anomaly can be attributed to interfering sources, which have their greatest effect on the flanks of the anomaly. These sprays follow different paths when using either conventional Euler deconvolution or extended Euler deconvolution. The paths of these spray solutions cross and cluster close to the true source location. This intersection of spray paths is used as a discriminant between poor and well‐constrained solutions, allowing poor solutions to be eliminated. Extended Euler deconvolution has been tested successfully on 2-D model and real magnetic profile data over contacts and thin dikes.

史辉, 刘天佑, Ghaboush D M.

利用欧拉反褶积法估计二度磁性体深度与位置

[J]. 物探与化探, 2005, 29(3):230-233.

[本文引用: 1]

Shi H, Liu T Y, Ghaboush D M.

The application of Euler deconvolution to estimating depth and location of the 2D magnetic body

[J]. Geophysical and Geochemical Exploration, 2005, 29(3):230-233.

[本文引用: 1]

Florio G, Fedi M, Pasteka R.

On the application of Euler deconvolution to the analytic signal

[J]. Geophysics, 2006, 71(6):L87-L93.

DOI:10.1190/1.2360204      URL     [本文引用: 1]

Standard Euler deconvolution is applied to potential-field functions that are homogeneous and harmonic. Homogeneity is necessary to satisfy the Euler deconvolution equation itself, whereas harmonicity is required to compute the vertical derivative from data collected on a horizontal plane, according to potential-field theory. The analytic signal modulus of a potential field is a homogeneous function but is not a harmonic function. Hence, the vertical derivative of the analytic signal is incorrect when computed by the usual techniques for harmonic functions and so also is the consequent Euler deconvolution. We show that the resulting errors primarily affect the structural index and that the estimated values are always notably lower than the correct ones. The consequences of this error in the structural index are equally important whether the structural index is given as input (as in standard Euler deconvolution) or represents an unknown to be solved for. The analysis of a case history confirms serious errors in the estimation of structural index if the vertical derivative of the analytic signal is computed as for harmonic functions. We suggest computing the first vertical derivative of the analytic signal modulus, taking into account its nonharmonicity, by using a simple finite-difference algorithm. When the vertical derivative of the analytic signal is computed by finite differences, the depth to source and the structural index consistent with known source parameters are, in fact, obtained.

鲁宝亮, 范美宁, 张原庆.

欧拉反褶积中构造指数的计算与优化选取

[J]. 地球物理学进展, 2009, 24(3):1027-1031.

[本文引用: 1]

Lu B L, Fan M N, Zhang Y Q.

The calculation and optimization of structure index in Euler deconvolution

[J]. Progress in Geophysics, 2009, 24(3):1027-1031.

[本文引用: 1]

Hansen R O, Deridder E.

Linear feature analysis for aeromagnetic data

[J]. Geophysics, 2006, 71(6):L61-L67.

DOI:10.1190/1.2357831      URL     [本文引用: 1]

This paper presents a new approach to detecting and two approaches to displaying lineaments associated with high-angle magnetic contacts, based on analysis of the curvature of the total horizontal gradient of the total magnetic field reduced to the pole. The first display is a contour or color plot of minus the principal curvature of largest absolute value. The second is a point plot of the local maxima of minus the largest principal curvature in regions where this curvature is negative. The paper also develops a depth-estimation technique for magnetic contacts based on the ratio of the curvature of the total gradient to the total gradient itself. Tests on synthetic data yield excellent results in detecting and delineating magnetic contact edges, and reasonable performance in producing depth estimates for the magnetic contacts. Results obtained using aeromagnetic data from the Finger Lakes region of New York State show good correlation with known structural features.

Phillips J D, Hansen R O, Blakely R J.

The use of curvature in potential-field interpretation

[J]. Exploration Geophysics, 2007, 38(2):111-119.

DOI:10.1071/EG07014      URL     [本文引用: 1]

刘金兰. 重磁位场新技术与山西断陷盆地构造识别划分研究[M]. 西安: 长安大学, 2008.

[本文引用: 2]

Liu J L. Development new technologies for potential field processing and research on the tectonic recognition division of Shanxi fault basin[D]. Xi'an: Chang'an University, 2008.

[本文引用: 2]

Roberts A.

Curvature attributes and their application to 3D interpreted horizons

[J]. First Break, 2001, 19(2):85-100.

DOI:10.1046/j.0263-5046.2001.00142.x      URL     [本文引用: 1]

王万银. 位场边缘识别方法技术研究[D]. 西安: 长安大学, 2009.

[本文引用: 3]

Wang W Y. The research on the edge recognition methods and techniques for potential field[D]. Xi'an: Chang'an University, 2009.

[本文引用: 3]

范美宁. 欧拉反褶积方法的研究及应用[D]. 长春: 吉林大学, 2006.

[本文引用: 1]

Fan M N. The study and application of Euler deconvolution method[D]. Changchun: Jilin University, 2006.

[本文引用: 1]

Wang W Y, Pan Y, Qiu Z Y.

A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data

[J]. Applied Geophysics, 2009, 6(3):226-233.

DOI:10.1007/s11770-009-0026-x      URL     [本文引用: 1]

何涛, 王万银, 黄金明, .

正则化方法在比值类位场边缘识别方法中的研究

[J]. 物探与化探, 2019, 43(2):308-319.

[本文引用: 1]

He T, Wang W Y, Huang J M, et al.

The research of the regularization method in the ratio methods of edge recognition by potential field

[J]. Geophysical and Geochemical Exploration, 2019, 43(2):308-319.

[本文引用: 1]

Zhu Y J, Wang W Y, Farquharson C G, et al.

Normalized vertical derivatives in the edge enhancement of maximum-edge-recognition methods in potential fields

[J]. Geophysics, 2021, 86(4):G23-G34.

DOI:10.1190/geo2020-0165.1      URL     [本文引用: 1]

Gravity and magnetic data have unique advantages for studying the lateral extents of geologic bodies. There is a class of methods for edge recognition called maximum-edge-recognition methods (MERMs) that use their extreme values to locate the edges of geologic bodies. These methods include the total horizontal derivative (THDR), the analytic signal amplitude, the theta map, and the normalized standard deviation. These are all first-order derivative-based techniques. There are also higher-order derivative-based methods that are derived from the first-order filters, for example, the THDR of the tilt angle. We have developed an edge-recognition filter that is based on the idea of the normalized vertical derivatives (VDRs) of existing methods. For each MERM, we first calculate its nth-order VDR and then use thresholding to locate its peaks. The peak values are subsequently normalized by the values of the original MERM. Testing on synthetic and real data indicates that the normalized VDRs of the MERMs have higher accuracy and better lateral resolution and they are more interpretable than existing techniques; thus, they are a worthwhile addition to the set of edge-detection tools for potential-field data.

罗新刚, 王万银, 张功成, .

基于重力资料的南海及邻区断裂分布特征研究

[J]. 地球物理学报, 2018, 61(10):4255-4268.

[本文引用: 1]

Luo X G, Wang W Y, Zhang G C, et al.

Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas

[J]. Chinese J.Geophys., 2018, 61(10):4255-4268.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com