Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (5): 1023-1029    DOI: 10.11720/wtyht.2019.0139
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于模式搜索的微地震速度反演——以渤海K油田为例
严皓, 李宾, 赵海峰, 唐何兵
中海石油(中国)有限公司天津分公司 渤海石油研究院,天津 300459
Pattern search algorithm for micro-seismic velocity inversion:A case study of K oilfield,Bohai Bay Basin
Hao YAN, Bin LI, Hai-Feng ZHAO, He-Bing TANG
Bohai Oilfield Research Institute,Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China
全文: PDF(5561 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

无论是井间地震还是水力压裂微地震,都需要知道相对准确的地层速度,笔者提出了一种新的微地震层速度反演方法,即模式搜索算法。首先利用测井资料和地质认识建立初始速度模型,然后拾取射孔记录的地震初至时间。由于有些地震记录激发时间难以确定,因此可利用各地震道之间的时差建立目标函数,最后利用模式搜索算法寻找目标函数最优解。模型试算结果及实际资料的应用都表明,该方法对于参数较少的层状介质模型有比较好的效果,为渤海水力压裂等技术提供一定借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严皓
李宾
赵海峰
唐何兵
关键词 渤海微地震模式搜索旅行时差速度反演    
Abstract

Whether it is the cross-well seismic survey or hydraulic fracturing micro-seismic survey,all we need to know is the relatively accurate formation velocity.This paper presents a new method for micro-seismic layer velocity inversion.First,the logging data and geological knowledge are used to establish an initial velocity model,and then the first arrival time of the perforation record is picked up.Because the excitation time of some seismic records is difficult to be determined,the objective function is established by using the time difference between the seismic traces.Finally,the pattern search algorithm is used to find the optimal solution of the objective function.The model trial results and the application of actual data show that the method has better results for the layered media model with fewer parameters.The method provides some reference for the fracturing and other technologies in the Bohai Sea.

Key wordsBohai Sea    micro-seismic    pattern search    traveltime difference    velocity inversion
收稿日期: 2019-03-13      出版日期: 2019-10-25
:  P631.4  
基金资助:中国海洋石油总公司重大科技专项“海上在生产油气田挖潜增效技术研究”(CNOOC-KJ125 ZDXM 06 LTD-10-KFSC-14)
作者简介: 严皓(1990-),男,工程师,硕士研究生,主要从事地震资料解释及油气田开发生产工作。
引用本文:   
严皓, 李宾, 赵海峰, 唐何兵. 基于模式搜索的微地震速度反演——以渤海K油田为例[J]. 物探与化探, 2019, 43(5): 1023-1029.
Hao YAN, Bin LI, Hai-Feng ZHAO, He-Bing TANG. Pattern search algorithm for micro-seismic velocity inversion:A case study of K oilfield,Bohai Bay Basin. Geophysical and Geochemical Exploration, 2019, 43(5): 1023-1029.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0139      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I5/1023
Fig.1  N=2时模式示意
a—最大正基模式;b—最小正基模式
Fig.2  模式搜索示意图[19]
a—初始模式;b—向北移动;c—向东移动;d—向北移动;e—步长收缩;f—向东移动
Fig.3  模式搜索流程
Fig.4  理论模型观测系统
Fig.5  反演值与真值走时对比
a—真值与原始值;b—真值与50次迭代值;c—真值与100次迭代值;d—真值与200次迭代值
迭代次数 v1/(m·s-1) v2/(m·s-1) v3/(m·s-1) 误差/ms
初始值 3000 3000 3000 24.89
50 3512 3128 4055 2.23
100 3864 3416 4727 0.566
150 3948 3468 4899 0.192
200 3986 3488 4967 0.065
300 4000.6 3500.4 5001 0.0024
真值 4000 3500 5000 0
Table 1  迭代次数与反演值
Fig.6  实际资料地震记录
Fig.7  原始测井曲线(黑)与反演曲线对比(红)
Fig.8  拾取时间与反演时间对比
[1] Rutledge J, Phillips W, Zinno R . Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays [C]//Expanded Abstracts of the 68 th Annual SEG Meeting,Society of Exploration Geophysicists , 1998: 338-341.
[2] Rutledge J, Phillips W, Mayerhofer M . Faulting induced by forced fluid injection and fluid flow forced by faulting:An interpretation of hydraulic fracture microseismicity,Carthage Cotton Valley Gas Field[J]. Bulletin of Seismmological Society of Amecica, 2004,94(5):1817-1830.
[3] 王纳申, 张译丹, 黄家旋 , 等. 用微地震技术评价姬塬油田体积压裂的效果[J]. 物探与化探, 2017,41(1):165-170.
[3] Wang N S, Zhang Y D, Huang J X , et al. The application of micro-seismic monitoring and evaluation technology to evolution of volume fracturing effect in the Jiyuan oilfield[J]. Geophysical and Geochemical Exploration, 2017,41(1):165-170.
[4] 陈新安 . 条带曲率裂缝发育区页岩气井裂缝扩展规律:以涪陵页岩气田焦石坝西南区块为例[J]. 断块油气田, 2018,25(6):742-746.
[4] Chen X A . Fracture propagation law for shale gas well in strip-curvature-crack development area:a case study of Southwest Jiaoshiba Block in Fuling shale gas filed[J]. Fault-Block Oil & Gas Filed, 2018,25(6):742-746.
[5] 刁锐, 吴国忱, 尚新民 , 等. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017,41(3):521-526.
[5] Diao R, Wu G C, Shang X M , et al. The blind separation denoising method for surface array micro-seismic data[J] Geophysical and Geochemical Exploration, 2017,41(3):521-526.
[6] 秦晅, 宋维琪 . 基于时窗能量比与互信息量的微地震初至拾取方法[J]. 物探与化探, 2016,40(2):374-379.
doi: 10.11720/wtyht.2016.2.23
[6] Qin X, Song W Q . Automatic first arrival pickup method of microseismic event based on energy ratio and mutual information[J]. Geophysical and Geochemical Exploration, 2016,40(2):374-379.
[7] 张永华, 陈祥, 杨道庆 , 等. 微地震监测技术在水平井压裂中的应用[J]. 物探与化探, 2013,37(6):1080-1084.
doi: 10.11720/j.issn.1000-8918.2013.6.23
[7] Zhang Y H, Chen X, Yang D Q , et al. The application of micro-seismic monitoring technology to the study of horizontal well fracturing[J]. Geophysical and Geochemical Exploration, 2013,37(6):1080-1084.
[8] 何惺华 . 基于三分量的微地震震源反演与效果[J]. 石油地球物理勘探, 2013,48(1):71-76.
doi:
[8] He X H . A micro-source inversion method based on three component data[J]. OGP, 2013,48(1):71-76.
[9] 王爱国, 周瑶琪, 陈勇 , 等. 基于微地震技术的油田裂缝监测及模拟[J]. 中国海洋大学学报, 2008,38(1):116-120.
[9] Wang A G, Zhou Y Q, Chen Y . Monitoring and simulation of fracture in oil field based on micro-seismic technology[J]. Periodical of Ocean University of China, 2008,38(1):116-120.
[10] 宋维琪, 高艳珂, 朱海伟 . 地面微地震水平层状模型波形反演[J]. 石油地球物理勘探, 2013,48(1):64-70.
doi:
[10] Song W Q, Gao Y K, Zhu H W . Waveform inversion of horizontal layer model for surface micro seismic[J]. OGP, 2013,48(1):64-70.
[11] 明君, 王波, 唐何兵 , 等. 海上大斜度井井间地震技术及应用——以渤海海域K油田为例[J]. 地球物理学进展, 2018,33(4):1672-1681.
[11] Ming J, Wang B, Tang H B , et al. Crosswell seismic technology of highly deviated well and its application: a case study of K oilfield in Bohai sea area[J]. Progress in Geophysics(in Chinese), 2018,33(4):1672-1681.
[12] Jubran A, David E.. Impact of velocity model calibration on microseismic locations [C]//Expanded Abstracts of the 83 rd Annual SEG Meeting,Society of Exploration Geophysicists , 2013: 1982-1986.
[13] 宋维琪, 王新强, 高艳可 . 地面监测微地震事件等效速度反演定位方法[J]. 石油物探, 2012,51(6):606-612,632.
[13] Song W Q, Wang X Q, Gao Y K . The inversion positioning method of the surface microseismic with equivalent velocity[J]. Geophysical Prospecting for Petroleum, 2012,51(6):606-612,632.
[14] 崔庆辉, 尹成, 刁瑞 , 等. 地面微地震监测速度模型优化方法研究[J]. 地球物理学进展, 2018,33(1):163-167.
[14] Cui Q H, Yin C, Diao R , et al. Research about optimization of velocity model in surface microseismic monitoring[J]. Progress in Geophysics (in Chinese), 2018,33(1):163-167
[15] 赵炜, 辛维, 毛中华 , 等. 利用单井微地震波形能量反演震源机制[J]. 石油地球物勘探, 2018,53(5):945-953,968.
[15] Zhao W, Xin W, Mao Z H , et al. Focal mechanism inversion with single-well microseismic wave energy[J]. OGP, 2018,53(5):945-953,968.
[16] 张晓林, 张峰, 李向阳 , 等. 水力压裂对速度场及微地震定位的影响[J]. 地球物理学报, 2013,56(10):3552-3560.
doi: 10.6038/cjg20131030
[16] Zhang X L, Zhang F, Li X Y , et al. The influence of hydraulic fracturing on velocity and microseismic location[J]. Chinese Journal of Geophysics, 2013,56(10):3552-3560
[17] Maxwell S, Bennett M, Walsh J.. Anisotropic velocity modeling for microseismic processing [C]//Denver:Expanded Abstracts of the 80 th Annual SEG Meeting,Society of Exploration Geophysicists , 2010: 2130-2134.
[18] Zimmer U, Jin J . Fast Search algorithm for automatic localization of microseismic events[J]. CSEG,Recorder, 2011,36(9):41-47.
[19] Kolda T, Lewis R, Torczon V . Optimization by direct search:new perspectives on some classical and modern methods[J]. SIAM Review, 2003,45(3):385-482.
[20] 高尔根, 席道瑛, 曾昭发 . 三维结构下全路径迭代射线追踪方法[J]. 岩石力学与工程学报, 2002,21(11):1610-1614.
[20] Gao E G, Xi D Y, Zeng Z F . Whole-path iterative ray tracing in 3D media[J]. Chinese Journal of Rock Mechanics and Engineering, 2002,21(11):1610-1614.
[1] 时伟, 林春华, 王维红, 高云路. 双约束变换时窗统计能量比地震波初至拾取方法[J]. 物探与化探, 2019, 43(5): 1064-1073.
[2] 王亚娟, 李怀良, 庹先国, 沈统. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5): 1083-1089.
[3] 程一鸣, 李怀良, 庹先国, 王耀彬, 王亚娟, 沈统. 一种可靠的强噪声三分量微地震数据初至拾取方法[J]. 物探与化探, 2019, 43(2): 367-372.
[4] 王波, 夏同星, 明君, 郭帅. 油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用[J]. 物探与化探, 2018, 42(5): 1026-1032.
[5] 薛花, 杜民, 文鹏飞, 张宝金, 张如伟. 网格层析速度反演方法在准三维西沙水合物中的应用[J]. 物探与化探, 2017, 41(5): 846-851.
[6] 刁瑞, 吴国忱, 尚新民, 芮拥军, 崔庆辉. 地面阵列式微地震数据盲源分离去噪方法[J]. 物探与化探, 2017, 41(3): 521-526.
[7] 王纳申, 张译丹, 黄家旋, 徐铠烔. 用微地震技术评价姬塬油田体积压裂的效果[J]. 物探与化探, 2017, 41(1): 165-170.
[8] 王惠艳, 陈亮, 胡树起, 孙忠军. 渤海湾西部海域表层沉积物重金属含量分布与评价[J]. 物探与化探, 2016, 40(3): 609-613.
[9] 秦晅, 宋维琪. 基于时窗能量比与互信息量的微地震初至拾取方法[J]. 物探与化探, 2016, 40(2): 374-379.
[10] 屈大鹏, 陈超, 王明飞, 苏建龙. 川东南地区基于海相泥页岩地层的压力系数预测——以丁山区块为例[J]. 物探与化探, 2016, 40(2): 349-352,389.
[11] 何柯, 周丽萍, 于宝利, 邓勇, 王丽丽, 王茜. 基于补偿阈值的曲波变换地面微地震弱信号检测方法[J]. 物探与化探, 2016, 40(1): 55-60.
[12] 芮拥军. 地面微地震水力压裂监测可行性分析[J]. 物探与化探, 2015, 39(2): 341-345.
[13] 刁瑞, 单联瑜, 尚新民, 芮拥军, 赵翠霞. 微地震监测数据时频域去噪方法[J]. 物探与化探, 2015, 39(1): 112-117.
[14] 段建华, 王保利, 朱红娟, 任亚平. 微地震监测数据压缩技术[J]. 物探与化探, 2014, 38(5): 1018-1023.
[15] 胡树起, 汤丽玲, 马生明, 王惠艳. 渤海湾表层沉积物中有机污染物组成、来源及其生态风险[J]. 物探与化探, 2014, 38(2): 309-317,324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com