|
|
Calculation and analysis of zero drift rates of gravimeters in two-way reciprocal observations based on different specifications |
CHANG Xiao-Peng1,2( ), CHEN Liang1, ZHANG Xiang1( ), ZHANG Ling-Xiao1, ZHU Zhang-Liu3, QIAO Yan-Yi4 |
1. Geophysical Survey Center, China Geological Survey, Langfang 06500, China 2. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China 3. Civil-Military Integrated Geological Survey Center, China Geological Survey, Chengdu 610000, China 4. Langfang Center for General Survey of Natural Resources, China Geological Survey, Langfang 065000, China |
|
|
Abstract Gravity survey is an important part of geodetic mapping and geophysical exploration. Different gravity specifications adopt different methods to calculate the zero drift rates in two-way reciprocal observations (i,j,j',i'). The repeated measurements of point j are subjected to static drift in the geological survey specification. By contrast, the zero drift rate is calculated through regression analysis in the petroleum specification. Different processing methods for the repeated measurement interval of point j yield significantly different zero drift rates based on the two specifications. Through theoretical formula analysis and comparison of measured data, this study analyzed the influence of g'j- and t'j-tj in the repeated measurements of point j on the calculation of the zero drift rate. By comparing with the regression analysis, this study illustrated the importance of static drift in reducing the uncertainties caused by instrument performance and measurement environment. Moreover, this study proposed the applicable conditions of the two specifications.
|
Received: 27 October 2022
Published: 27 October 2023
|
|
Corresponding Authors:
ZHANG Xiang
E-mail: 2585479415@qq.com;810173902@qq.com
|
|
|
|
|
Determination of zero displacement R line
|
| 三台仪器的对比值/(mGal·h-1) | 序 号 | 4490# | 131213# | 132218# | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 石油规范 计算零漂 率K3 | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 石油规范 计算零漂 率K3 | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 石油规范 计算零漂 率K3 | 1 | -0.0092 | -0.0296 | -0.0053 | -0.0131 | -0.0255 | -0.0107 | 0.0000 | -0.0118 | 0.0021 | 2 | 0.0020 | -0.0097 | 0.0041 | -0.0030 | -0.0109 | -0.0016 | -0.0197 | -0.0387 | -0.0167 | 3 | 0.0094 | 0.0102 | 0.0093 | -0.0036 | -0.0078 | -0.0029 | 0.0020 | -0.0135 | 0.0043 | 4 | 0.0075 | 0.0066 | 0.0077 | -0.0008 | 0.0000 | -0.0010 | -0.0026 | -0.0062 | -0.0021 | 5 | -0.0051 | -0.0131 | -0.0037 | 0.0151 | 0.0169 | 0.0148 | -0.0053 | -0.0248 | -0.0019 | 6 | -0.0106 | -0.0188 | -0.0093 | -0.0088 | -0.0131 | -0.0081 | 0.0051 | -0.0065 | 0.0065 |
|
Comparison with the zero drift rate in the technical specification of petroleum gravity exploration
|
| 三台仪器对比值/(mGal·h-1) | 序 号 | 4490# | 131213# | 点 时间差 | 点 读数差 | 点两次 测量零 漂率K0 | 未剔除 点间隔零 漂率K1 | 剔除 点 间隔零 漂率K2 | 变化率/% | 点 时间差 | 点 读数差 | 点两次 测量零 漂率K0 | 未剔除 点间隔零 漂率K1 | 剔除 点 间隔零 漂率K2 | 变化率/% | 1 | 0:16:42 | 0.011 | 0.0395 | -0.0092 | -0.0296 | 222.06 | 0:16:31 | 0.005 | 0.0170 | -0.0131 | -0.0255 | 94.71 | 2 | 0:11:34 | 0.008 | 0.0398 | 0.0020 | -0.0097 | -571.74 | 0:12:09 | 0.004 | 0.0198 | -0.0030 | -0.0109 | 266.19 | 3 | 0:09:53 | 0.001 | 0.0061 | 0.0094 | 0.0102 | 8.52 | 0:11:08 | 0.002 | 0.0108 | -0.0036 | -0.0078 | 114.93 | 4 | 0:11:00 | 0.002 | 0.0109 | 0.0075 | 0.0066 | -12.44 | 0:10:58 | -0.001 | -0.0036 | -0.0008 | 0.0000 | -100.00 | 5 | 0:10:49 | 0.004 | 0.0222 | -0.0051 | -0.0131 | 159.19 | 0:10:53 | 0.002 | 0.0092 | 0.0151 | 0.0169 | 11.98 | 6 | 0:08:40 | 0.003 | 0.0208 | -0.0106 | -0.0188 | 77.90 | 0:10:05 | 0.001 | 0.0060 | -0.0088 | -0.0131 | 47.96 | 序 号 | 132218# | 点时间差 | 点读数差 | 点两次测 量零漂率K0 | 未剔除 点间 隔零漂率K1 | 剔除 点间 隔零漂率K2 | 变化率/% | 1 | 0:14:34 | 0.008 | 0.0330 | 0.0000 | -0.0118 | | 2 | 0:10:21 | 0.009 | 0.0502 | -0.0197 | -0.0387 | 95.85 | 3 | 0:09:39 | 0.011 | 0.0684 | 0.0020 | -0.0135 | -790.64 | 4 | 0:07:44 | 0.002 | 0.0155 | -0.0026 | -0.0062 | 139.76 | 5 | 0:10:58 | 0.010 | 0.0565 | -0.0053 | -0.0248 | 371.47 | 6 | 0:06:39 | 0.008 | 0.0752 | 0.0051 | -0.0065 | -226.34 |
|
Comparison of zero drift rate of round-trip measurement
|
|
K0、K1 positive and negative consistency
|
">
|
K0 "reverse direction" fluctuation
|
| 三台仪器对比值/(mGal·h-1) | 序号 | 4490# | 131213# | 132218# | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 时间间隔 | 点间 隔对增 量的影响 | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 时间间隔 | 点间 隔对增 量的影响 | 未剔除 点间隔零 漂率K1 | 剔除 点间隔零 漂率K2 | 时间间隔 | 点间 隔对增 量的影响 | 1 | -0.0092 | -0.0296 | 0:20:36 | 0.0070 | -0.0131 | -0.0255 | 0:18:34 | 0.0038 | 0.0000 | -0.0118 | 0:17:41 | 0.0035 | 2 | 0.0020 | -0.0097 | 0:19:21 | 0.0038 | -0.0030 | -0.0109 | 0:16:31 | 0.0022 | -0.0197 | -0.0387 | 0:18:07 | 0.0057 | 3 | 0.0094 | 0.0102 | 0:22:22 | 0.0003 | -0.0036 | -0.0078 | 0:21:03 | 0.0015 | 0.0020 | -0.0135 | 0:20:30 | 0.0053 | 4 | 0.0075 | 0.0066 | 0:17:52 | 0.0003 | -0.0008 | 0.0000 | 0:19:06 | 0.0003 | -0.0026 | -0.0062 | 0:19:16 | 0.0012 | 5 | -0.0051 | -0.0131 | 0:16:23 | 0.0022 | 0.0151 | 0.0169 | 0:19:08 | 0.0006 | -0.0053 | -0.0248 | 0:18:00 | 0.0059 | 6 | -0.0106 | -0.0188 | 0:16:58 | 0.0023 | -0.0088 | -0.0131 | 0:19:17 | 0.0014 | 0.0051 | -0.0065 | 0:22:19 | 0.0043 |
|
Comparison of influence value of j-point interval on increment
|
[1] |
DZ/T 0171—2017大比例尺重力勘查规范[S].
|
[1] |
DZ/T 0171—2017 Specification for large-scale gravity survey[S].
|
[2] |
DZ/T 0004—2015重力调查技术规范(1:50 000)[S].
|
[2] |
DZ/T 0004—2015 The technical specification for gravity survey(1:50 000)[S].
|
[3] |
DZ/T 0082—1993区域重力调查规范[S].
|
[3] |
DZ/T 0082—1993 The standard for regional gravity survey[S].
|
[4] |
DZ/T 0082—2006区域重力调查规范[S].
|
[4] |
DZ/T 0082—2006 The standard for regional gravity survey[S].
|
[5] |
DZ/T 0082—2021区域重力调查规范[S].
|
[5] |
DZ/T 0082—2021 The standard for regional gravity survey[S].
|
[6] |
GB/T 20256—2019国家重力控制测量规范[S].
|
[6] |
GB/T 20256—2019 Specifications for the gravimetry control[S].
|
[7] |
GB/T 17944—2018加密重力测量规范[S].
|
[7] |
GB/T 17944—2018 Specifications for the dense gravity measurement[S].
|
[8] |
SY/T 5819—2016陆上重力磁力勘探技术规程[S].
|
[8] |
SY/T 5819—2016 Technical specification for land gravity survey[S].
|
[9] |
SY/T 5171—2020陆上石油物探测量规范[S].
|
[9] |
SY/T 5171—2020 Specifications od survey for petroleum geophysical prospecting on land[S].
|
[10] |
曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
|
[10] |
Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.
|
[11] |
北京地质学院物探教研室. 重力勘探讲义[R]. 中国地质大学(北京), 1959.
|
[11] |
Geophysical Exploration Teaching and Research Office of Beijing Institute of Geology. Handout of gravity exploration[R]. China University of Geosciences(Beijing), 1959.
|
[12] |
徐梦龙, 杨亚斌, 吴燕冈. 基于模糊加权线性回归法的重力仪漂移系数计算[J]. 世界地质, 2018, 37(3):891-896.
|
[12] |
Xu M L, Yang Y B, Wu Y G. Zero-drift coefficient algorithm of gravimeter based on fuzzy weighted linear regression[J]. Global Geology, 2018, 37(3):891-896.
|
[13] |
陆邦干. 石油工业地球物理勘探早期发展史大事记[J]. 石油地球物理勘探, 1985, 20 (4):338-343.
|
[13] |
Lu B G. Memorabilia of the early development history of geophysical exploration in the petroleum industry[J]. Oil Geophysical Prospecting. 1985, 20 (4):338-343.
|
[14] |
许厚泽, 王谦身, 陈益慧. 中国重力测量与研究的进展[J]. 地球物理学报, 1994, 37(1):339-352.
|
[14] |
Xu H Z, Wang Q S, Chen Y H. Progress of gravity survey and research in China[J]. Chinese Journal of Geophysics, 1994, 37(1):339-352.
|
[15] |
王懋基. 中国重力勘探的新进展[J]. 地球物理学报, 1994, 37(1):353-360.
|
[15] |
Wang M J. New development of gravity prospecting in China[J]. Chinese Journal of Geophysics, 1994, 37(1):353-360.
|
[16] |
王懋基, 蔡鑫, 涂承林. 中国重力勘探的发展与展望[J]. 地球物理学报, 1997, 40(1):292-297.
|
[16] |
Wang M J, Cai X, Tu C L. Development and prospect of gravity prospecting in China[J]. Chinese Journal of Geophysics, 1997, 40(1):292-297.
|
[17] |
杨亚斌, 龚胜平, 韩革命, 等. 《区域重力调查规范》编写说明[R]. 中国地质科学院地球物理地球化学研究所, 2020.
|
[17] |
Yang Y B, Gong S P, Han G M, et al. The standard for regional gravity survey instructions[R]. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, 2020.
|
[18] |
曾华霖. 重力仪的现状及发展[J]. 物探与化探, 1999, 23 (2):84-89.
|
[18] |
Zeng H L. Present state and development of gravimeters[J]. Geophysical and Geochemical Exploration, 1999, 23 (2):84-89.
|
[19] |
邓友茂, 王振亮, 孙诚业. CG型重力仪性能对比分析[J]. 大地测量与地球动力学, 2021, 41(4):432-435.
|
[19] |
Deng Y M, Wang Z L, Sun C Y. Comparative analysis of the CG gravimeters performance[J]. Journal of Geodesy and Geodynamics, 2021, 41(4):432-435.
|
[20] |
王应建, 邱雪峰, 张松堂, 等. 高崖口重力短基线的校准与分析[J]. 大地测量学与地球动力学, 2019, 39(6):654-656.
|
[20] |
Wang Y J, Qiu X F, Zhang S T, et al. Calibration and analysis of the gaoyakou short gravity calibration baseline[J]. Journal of Geodesy and Geodynamics, 2019, 39(6):654-656.
|
[21] |
朱淑霞. CG-2型重力仪格值变化对流动重力段差测量值的影响[J]. 地壳形变与地震, 1982:84-93.
|
[21] |
Zhu S X. The effect of CG-2 gravimeter grid value change on the flow gravity segment difference measurement value[J]. Crustal Deformation and Earthquake, 1982:84-93.
|
[22] |
郝洪涛, 李辉, 孙和平, 等. CG-5重力仪零漂改正及格值系数检测应用研究[J]. 武汉大学学报:信息科学版, 2016, 41(9):1265-1271.
|
[22] |
Hao H T, Li H, Sun H P, et al. Application of zero drift correct and detection of scale parameters of CG-5 gravimeter[J]. Journal of Wuhan University:Information Science Edition, 2016, 41(9):1265-1271.
|
[23] |
籍利平. 六台Z400重力仪的格值试验[J]. 测绘技术装备, 2002, 1(4):39-41.
|
[23] |
Ji L P. Gravimeter scale test of six Z400 gravimeters[J]. Geomatics Technology and Equipment, 2002, 1(4):39-41.
|
[24] |
朱虎. 石英弹簧重力仪的零点掉格和稳定性[J]. 地球物理学报, 1965, 14 (3):197-203.
|
[24] |
Zhu H. Drifting of zero of a quartz spring gravimeter[J]. Chinese Journal of Geophysics, 1965, 14 (3):197-203.
|
[25] |
唐光后. 我国物探仪器的现状和展望[J]. 地球物理勘探, 1966, 00:24-30.
|
[25] |
Tang G H. The current situation and prospects of geophysical instruments in China[J]. Geophysical Prospecting, 1966, 00:24-30.
|
[26] |
范祥发. 格值分段计算重力单程观测、三程循环观测法的公式[J]. 地质与勘探, 2000, 36(3):46-47.
|
[26] |
Fan X F. A method for calculation of gravity single range observation and three range circulation observation by sectional scale value[J]. Geology and Prospecting, 2000, 36(3):46-47.
|
[27] |
游泽霖. 流动重力测量限差和段差精度估计方法的讨论[J]. 地壳形变与地震, 1985, 5(2):153-161.
|
[27] |
You Z L. On the error limitation and method of estimating accuracy in respect of mobile relative gravity measurement[J]. Crustal Deformation and Earthquake, 1985, 5(2):153-161.
|
[28] |
游泽霖, 成福元. 三程测量重力段差的精度估算方法[J]. 地壳形变与地震, 1981:1-10.
|
[28] |
You Z L, Cheng F Y. Seismic moment tensor in anisotropic ATI media:Shear faulting[J]. Crustal Deformation and Earthquake, 1981:1-10.
|
[29] |
范祥发. 物探重力Ⅲ级基点快速联测方法及资料整理[J]. 地质与勘探, 2001, 37(6):58.
|
[29] |
Fan X F. Rapid conjunction measurement method and data collation of gravity three-level base point of physical prospecting[J]. Geology and Prospecting, 2001, 37(6):58.
|
[30] |
周传公, 孙勇, 韩昱, 等. 安徽省重力基点网的布设及其成果意义[J]. 安徽地质. 2017, 27(3):206-208.
|
[30] |
Zhou C G, Sun Y, Han Y, et al. Laying of gravity base points net in Anhui Province and the result and significance[J]. Geology of Anhui, 2017, 27(3):206-208.
|
[31] |
陈俊丽, 王剑辉. 区域重力调查中重力基点网定额制定工作探讨[J]. 中国国土资源经济. 2015:36-39.
|
[31] |
Chen J L, Wang J H. On establishing norm for gravity base-point net in regional gravity survey[J]. Natural Resource Economics of China, 2015:36-39.
|
[32] |
霍志周. 重力资料预处理系统研制[D]. 西安: 长安大学. 2006.
|
[32] |
Huo Z Z. Development of gravity data pre-processing system[D]. Xi'an: Chang'an University, 2006.
|
[33] |
尚立志, 张宝松, 黄宁. LCR-G、CG-5型重力仪仪器性能试验比较[J]. 绿色科技, 2017(4):137-139.
|
[33] |
Shang L Z, Zhang B S, Huang N. Comparative analysis of instrument performance test of LCR-G and CG-5 gravimeter[J]. Journal of Green Science and Technology, 2017(4):137-139.
|
[34] |
石人骥. 重力测量中双程往返重复观测零点校正的简易计算法[J]. 石油物探, 1983, 22(2):95-101.
|
[34] |
Shi R J. A simplified way of calculation of the two-way reciprocal measurement on zero calibration in gravimeter survey[J]. Geophysical Prosecting for Petroleum, 1983, 22(2):95-101.
|
|
|
|