|
|
The application of multi-channel energy spectrum survey to the exploration of granite type rare metal deposits in eastern Hebei |
CHENG Li-Qun( ), ZHANG Wen-Yu, WANG Kai, WANG Bin, PEI Ming-Xing |
No. 8 Geological Party,Hebei Bbureau of Geology and Mineral Resources Exploration,Qinhuangdao 066000,China |
|
|
Abstract There are many Yanshanian granite intrusions in eastern Hebei, which constitute a good metallogenic background of granite-type rare metal deposits. In order to study the metallogenic prospects of these rock masses, the authors chose the Hanerzhuang granitic body in this area as the research object, and carried out the multi-channel energy spectrum survey to analyze the characteristics of radioactive parameters of different lithologies, the characteristics of radioactive anomalies and their relationship with rare metal mineralization. The results show that the average content of U, Th and total trace in the monzogranite is 9 times, 8.5 times and 3.9 times the background value in the whole area, respectively. The distribution characteristics of the anomaly field are basically consistent with the surface outburst form of the monzogranite. Combined with the results of petrogeochemical study and artificial heavy sand, the authors hold that the monzogranite whole rock has a good mineralization of rare metals. The rocks contain a large number of U, Th and Hf minerals such as yttrium-brown niobium ore and monazite, and these minerals have a symbiotic relationship with Nb, Ta, Rb and other rare metal minerals. According to the distribution of anomaly field and the characteristics of thorium potassium, thorium uranium, uranium potassium ratio and other parameters, the favorable areas of rare metal mineralization can be directly delineated to guide the arrangement of prospecting engineering. The effective implementation of this method provides a convenient, efficient and cheap means for the exploration of rare metals in the granite area in the future.
|
Received: 14 December 2020
Published: 20 August 2021
|
|
|
|
|
|
The geological and engineering layout of the study area 1—Quaternary;2—gneiss;3—potassium feldspar granite;4—monzogranite;5—granitic porphyry;6—atitude of stratum;7—geological boundary;8—fault and serial number;9—location and serial number ofmultichannel energy spectrum and petrogeochemical survey section;10—location and number of probing groove
|
岩石 (地层) | w(U)/10-6 | w(Th)/10-6 | w(K)/% | 总道/10-6 | | | Sd | Cv | | Sd | Cv | | Sd | Cv | | Sd | Cv | 第四系 | 1.29 | 0.70 | 0.54 | 7.42 | 3.76 | 0.51 | 1.87 | 0.33 | 0.17 | 11.99 | 4.41 | 0.37 | 片麻岩 | 0.74 | 0.51 | 0.69 | 3.92 | 2.34 | 0.60 | 1.79 | 0.59 | 0.33 | 9.00 | 3.42 | 0.38 | 钾长花岗岩 | 1.36 | 0.81 | 0.59 | 12.19 | 3.21 | 0.26 | 3.36 | 0.74 | 0.22 | 18.97 | 4.16 | 0.22 | 二长花岗岩 | 8.59 | 3.11 | 0.36 | 52.20 | 18.11 | 0.35 | 3.01 | 0.57 | 0.19 | 44.08 | 12.60 | 0.29 | 全 区 | 0.95 | 0.63 | 0.66 | 6.09 | 4.13 | 0.68 | 2.15 | 0.78 | 0.36 | 11.12 | 4.94 | 0.45 |
|
The characteristics of rock (stratum) multichannel energy spectrum parameters
|
元素 (单位) | 背景值 | 标准方差 | 偏高场 | 高场 | 异常场 | | Sd | ≥+Sd | ≥+2Sd | ≥+3Sd | K/% | 2.15 | 0.78 | 2.93~3.70 | 3.70~4.48 | 4.48 | Th/10-6 | 6.09 | 4.13 | 10.22~14.35 | 14.35~18.48 | 18.48 | U/10-6 | 0.95 | 0.63 | 1.58~2.21 | 2.21~2.83 | 2.83 | 总道/10-6 | 11.12 | 4.94 | 16.07~21.01 | 21.01~25.95 | 25.95 |
|
The multichannel energy spectrum anomaly levels
|
|
The composite profile of line 3 1—quaternary;2—gneiss;3—monzogranite(mineralized belt);4—attitude of stratum
|
|
The plane profile of multichannel energy spectrum 1—Quaternary;2—gneiss;3—potassium feldspar granite;4—monzogranite(mineralized belt);5—fault;6—multichannel energy spectrum measurement section position and number
|
岩性 | 元素含量 | | Nb | Ta | Rb | Cs | Li | Ti | Zr | V | Mo | W | Be | U | Th | Hf | 二长花岗岩 | 最小值 | 74.5 | 9.77 | 372 | 0.99 | 3.93 | 79 | 117 | 0.15 | 0.82 | 0.13 | 1.55 | 6.14 | 23.4 | 12.1 | 最大值 | 351 | 36.0 | 1129 | 20.3 | 590 | 990 | 464 | 10.7 | 135 | 9.89 | 29.9 | 22.9 | 88.8 | 42.2 | 平均值 | 259 | 19.4 | 682 | 3.60 | 103 | 295 | 304 | 5.10 | 20.8 | 1.5 | 4.72 | 14.4 | 56.3 | 25.9 | 钾长花岗岩 | 最小值 | 7.42 | 0.31 | 74.8 | 0.80 | 10.9 | 258 | 82.5 | 2.18 | 4.06 | 0.87 | 2.33 | 0.49 | 3.38 | 4.38 | 最大值 | 38.9 | 6.14 | 857 | 6.17 | 118 | 4736 | 246 | 184 | 92.1 | 3.96 | 131 | 43.9 | 17.8 | 10.8 | 平均值 | 21.5 | 2.01 | 207 | 1.93 | 38.7 | 872 | 113 | 14.2 | 31.0 | 1.77 | 8.27 | 6.67 | 11.4 | 5.95 | 片麻岩 | 最小值 | 1.41 | 0.09 | 9.61 | 0.22 | 4.33 | 299 | 23.7 | 4.60 | 0.65 | 0.28 | 0.69 | 0.2 | 2.03 | 3.07 | 最大值 | 36.2 | 2.94 | 1868 | 63.4 | 1573 | 7120 | 490 | 345 | 142 | 51.3 | 538 | 2.75 | 14.5 | 14.2 | 平均值 | 8.52 | 0.57 | 163 | 4.33 | 71.2 | 3022 | 129 | 114 | 6.07 | 4.00 | 7.90 | 0.52 | 3.25 | 7.32 | 华北地台丰度值[22] | 10 | 0.6 | 63 | 1.4 | 13 | 3600 | 146 | 110 | 0.5 | 0.6 | 1.1 | 1 | 5 | 4 | 中国碱长花岗岩[22] | 20 | 1.89 | 217 | 3.1 | 14 | 855 | 135 | 12 | 0.71 | 1.1 | 4 | 4 | 20.9 | 5.2 |
|
The petrogeochemical characteristics of the strata in the study area10-6
|
| Nb | Ta | Rb | Cs | Li | Ti | Zr | V | Mo | W | Be | U | Th | Hf | Nb | 1 | | | | | | | | | | | | | | Ta | 0.941 | 1 | | | | | | | | | | | | | Rb | 0.684 | 0.656 | 1 | | | | | | | | | | | | Cs | 0.07 | -0.054 | 0.615 | 1 | | | | | | | | | | | Li | 0.086 | 0.078 | 0.595 | 0.746 | 1 | | | | | | | | | | Ti | -0.592 | -0.621 | -0.483 | 0.022 | -0.095 | 1 | | | | | | | | | Zr | 0.843 | 0.78 | 0.615 | -0.009 | 0.1 | -0.538 | 1 | | | | | | | | V | -0.551 | -0.571 | -0.46 | 0.045 | -0.1 | 0.946 | -0.538 | 1 | | | | | | | Mo | 0.271 | 0.275 | 0.176 | -0.012 | -0.046 | -0.295 | 0.256 | -0.286 | 1 | | | | | | W | -0.189 | -0.214 | -0.073 | 0.15 | 0.099 | 0.16 | -0.179 | 0.142 | -0.04 | 1 | | | | | Be | -0.03 | -0.041 | 0.112 | 0.322 | 0.121 | -0.021 | -0.067 | -0.016 | 0.057 | 0.077 | 1 | | | | U | 0.82 | 0.81 | 0.578 | -0.05 | 0.053 | -0.609 | 0.672 | -0.563 | 0.215 | -0.19 | -0.045 | 1 | | | Th | 0.947 | 0.904 | 0.665 | -0.032 | 0.069 | -0.669 | 0.812 | -0.587 | 0.23 | -0.201 | -0.043 | 0.809 | 1 | | Hf | 0.946 | 0.94 | 0.648 | -0.021 | 0.088 | -0.549 | 0.836 | -0.46 | 0.257 | -0.177 | -0.046 | 0.798 | 0.922 | 1 |
|
Element correlation coefficient matrix
|
|
Cross plot of uranium and thorium about rare metal mineralization
|
|
Cross plot of uranium and thorium about rare metal mineralization
|
[1] |
周振华, 车合伟, 马星华, 等. 初论稀有金属矿床研究的一些重要进展[J]. 地质与勘探, 2016,52(4):614-626.
|
[1] |
Zhou Z H, Che H W, Ma X H, et al. A preliminary discussion on some important advances of the rare metal deposit[J]. Geology and Exploration, 2016,52(4):614-626.
|
[2] |
谢长江, 尹建华, 李新敏. 三稀元素矿床类型及找矿标志[J]. 四川地质学报, 2018,38(3):451-456.
|
[2] |
Xie C J, Yin J H, Li X M. Type and ore criteria of rare,rare earth and scattered elements deposits[J]. Acta Geologica Sichuan, 2018,38(3):451-456.
|
[3] |
李顺庭, 祝新友, 王京彬. 我国稀有金属矿床研究现状初探[J]. 矿物学报, 2011,31(s1):256-257.
|
[3] |
Li S T, Zhu X Y, Wang J B. The current research on raremetal ore deposits in China[J]. Acta Mineralogica Sinica, 2011,31(s1):256-257.
|
[4] |
朱京占, 卢显成, 姚仲伟. 内蒙古石灰窑稀有金属矿地质特征及矿化规律[J]. 矿产勘查, 2013,4(6):635-641.
|
[4] |
Zhu J Z, Lu X C, Yao Z W. Geological characteristics and metallogenic regularity of rare metal desposit in Shihuiyao, Inner Mongolia[J]. Mineral Exploration, 2013,4(6):635-641.
|
[5] |
叶松, 周宝霞, 叶德隆. 稀有金属花岗岩的特征及其成矿作用[J]. 岩石矿物学杂志, 2015,36(5):767-776.
|
[5] |
Ye S, Zhou B X, Ye D L. Characteristics of the rare metal granite and its mineralization[J]. Acta Petrologica et Mineralogica, 2015,36(5):767-776.
|
[6] |
高峰, 张寿庭, 邹灏, 等. 地面伽马能谱测量在内蒙古林西地区萤石矿找矿中的应用[J]. 物探与化探, 2013,37(2):206-211.
|
[6] |
Gao F, Zhang S T, Zou H, et al. The application of the field gamma ray spectrometry to the prospecting for fluorite deposits in LinXi area of Inner Monggolia[J]. Geophysical and Geochemical Exploration, 2013,37(2):206-211.
|
[7] |
刘靖华, 王祝文, 田刚, 等. 地面伽马能谱测量在浅覆盖区地质填图中的应用[J]. 地质与勘探, 2003,39(2):61-64.
|
[7] |
Liu J H, Wang Z W, Tian G, et al. Application of ground gamma-spectrometry in geological mapping in shallow overburden areas[J]. Geology and Exploration, 2003,39(2):61-64.
|
[8] |
邱元德, 周蓉生, 侯新生, 等. 伽马能谱测量在侵入体岩石谱系单位填图中的应用[J]. 中国区域地质, 1998,17(3):317-321.
|
[8] |
Qiu Y D, Zhou R S, Hou X S, et al. The applecation of the gamma spectrometry in the mapping of Hierarchical units of intusions[J]. Regional Geology of China, 1998,17(3):317-321.
|
[9] |
曹秋义, 山亚, 张恩, 等. 地面伽马能谱测量在铀矿找矿中的应用研究——以黑龙江省嘉荫县磨石山地区为例[J]. 物探与化探, 2016,40(4):701-704.
|
[9] |
Cao Q Y, Shan Y, Zhang E, et al. The application of ground gamma spectrometric measurement to uranium prospecting:A case study of Millstone Hill in Jiayin County,Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2016,40(4):701-704.
|
[10] |
张忠平, 贾为卫. 物探方法在喀拉扎地区铀矿勘查中的应用[J]. 矿产勘查, 2016,7(3):499-504.
|
[10] |
Zhang Z P, Jia W W. Application of geophysical techniques in uranium deposit,Kalazha area, Xinjiang[J]. Mineral Exploration, 2016,7(3):499-504.
|
[11] |
徐皓, 吕希华. 伽马能谱测量在乌拉嘎金矿外围柳树河地区找矿中的应用[J]. 吉林地质, 2009,28(4):72-75.
|
[11] |
Xu H, Lyu X H. Application of gamma-ray spectrum measure to the external prospecting of Wulaga gold deposit, Liushuhe area, Heilongjiang Province[J]. Jilin Geology, 2009,28(4):72-75.
|
[12] |
赖万昌, 金景福. 伽马能谱法在锑矿找矿靶区研究中的应用[J]. 物探与化探, 2002,26(4):290-292.
|
[12] |
Lai W C, Jin J F. Application ofγ spectrometry method in the research of Sb deposit[J]. Geophysical and Geochemical Exploration, 2002,26(4):290-292.
|
[13] |
侯新生, 汪云亮, 周蓉生. 地面伽玛能谱测量在西范坪铜矿勘查中的应用[J]. 物探化探计算技术, 2000,22(1):52-55.
|
[13] |
Hou X S, Wang Y L, Zhou R S. The application of Cd-3 computerized groundγ-ray spectrometry to the Xifanping Cu deposit[J]. Computing Techniques for Geophysical and Exploration, 2000,22(1):52-55.
|
[14] |
姚毅锋. 伽马能谱测量在环境天然放射性水平评价中的应用[J]. 四川地质学报, 2002,22(3):188-190.
|
[14] |
Yao Y F. The application of gamma-ray spectrometry to the assessment of environmental natural radioactivity[J]. Acta Geologica Sichuan, 2002,22(3):188-190.
|
[15] |
张选旭, 张洁. 一种稀有金属冶炼伴生放射性元素的去除方法[J]. 中国钨业, 2015,30(3):28-31.
|
[15] |
Zhang X X, Zhang J. Removing radioactive elements associated with rare metals in the smelting process[J]. China Tungsten Industry, 2015,30(3):28-31.
|
[16] |
王盘喜, 包民伟. 我国钽铌等稀有金属矿概况及找矿启示[J]. 金属矿山, 2015,468(6):92-97.
|
[16] |
Wang P X, Bao M W. General situation and prospecting revelation of Tantalum-Niobium rare metal deposits in China[J]. Metal Mine, 2015,468(6):92-97.
|
[17] |
杨付领, 牛宝贵, 任纪舜, 等. 马兰峪背斜核部中生代侵入岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地球学报, 2015,36(4):455-465.
|
[17] |
Yang F L, Niu B G, Ren J S, et al. Zircon U-Pb ages and geochemical characteristics of the Mesozoic Intrusive bodies along the core of the malanyu Anticline and their tectonic significances[J]. Acta Geoscientia Sinica, 2015,36(4):455-465.
|
[18] |
王爱臣, 孙金龙, 聂晨光, 等. 河北茅山金矿地质特征及成矿条件探讨[J]. 矿产勘查, 2016,7(2):316-321.
|
[18] |
Wang A C, Sun J L, Nie C G, et al. Geological characteristics and mineralization conditions of Maoshan gold deposit in Zunhua area,Hebei[J]. Mineral Exploration, 2016,7(2):316-321.
|
[19] |
刘英俊, 曹励明, 李兆膦. 元素地球化学[M]. 北京: 科学出版社, 1984.
|
[19] |
Liu Y J, Cao L M, Li Z L. Geochemistry of element[M]. Beijing: Science Press, 1984.
|
[20] |
王继伦, 李善芳, 齐文秀, 等. 中国金矿物探、化探方法技术的研究与应用[M]. 北京: 地质出版社, 1997.
|
[20] |
Wang J L, Li S F, Qi W X, et al. Geophysical and geochemical mineral exploration for gold in China-research and apllications[M]. Beijing: Geological Publishing House, 1997.
|
[21] |
曹云, 王光辉, 马昌威, 等. 四川理塘海子山地区放射性地球物理特征[J]. 中国地质调查, 2020,7(6):61-67.
|
[21] |
Cao Y, Wang G H, Ma C W, et al. Radioactive geophysical features of Haizishan area in Litang of Sichuan Province[J]. Geological Survey of China, 2020,7(6):61-67.
|
[22] |
史长义, 鄢明才, 刘崇民, 等. 中国不同岩石类型花岗岩类元素丰度及特征[J]. 物探化探计算技术, 2005,27(3):256-262.
|
[22] |
Shi C Y, Yan M C, Liu C M, et al. Abundances of chemical elements in different rock types of the granitoids of China and its Characteristics[J]. Computing Techniques for Geophysical ang Geochemical Exploration, 2005,27(3):256-262.
|
[23] |
陈金勇, 范洪海, 王生云, 等. 内蒙古扎鲁特旗巴尔哲超大型矿床控矿因素分析[J]. 地质力学学报, 2019,25(1):27-35.
|
[23] |
Chen J Y, Fan H H, Wang S Y, et al. Ore-controlling factors of the Baerzhe super-large deposit in Jarud Banner,Inner Mongolia[J]. Journal of Eomechanics, 2019,25(1):27-35.
|
[1] |
FANG Yong-Kun, Cao Cheng-Gang, DONG Jun-Lin, LI Ling-Gui. Geochronology and geochemistry of the granodiorite intrusion in Yangkang area of Qinghai Province and its geological significance[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1367-1377. |
[2] |
TIAN Jian-Min, XU Zheng-Qi, YIN Ming-Hui, LI Tao, SUN Kang. Geochemical characteristics and geological significance of uranium-rich granites in Lincang area[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1103-1115. |
|
|
|
|