|
|
An experimental study of geochemical exploration methods for concealed deposits in loess overburden area: A case study of the Zhonghedi polymetallic deposit in Henan Province |
DOU Bei1,2,3( ), ZHANG Bi-Min1,3( ), YE Rong2, CHI Qing-Hua1,3 |
1. Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000,China 2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083,China 3. UNESCO International Center on Global-Scale Geochemistry, Langfang 065000,China |
|
|
Abstract As it is difficult to collect the weathering stream sediments of bedrock in the loess overburden area,the effect of regional geochemical exploration is often not ideal; therefore, regional geochemical exploration work has not been carried out in many loess overburden areasof China. In this paper, the deep-penetrating geochemistry method was used to carry out the experimental study of geochemical prospecting techniques for concealed deposits in the loess overburden area in the Zhonghedi silver-lead-zinc polymetallic deposit in Xiaoshan, Henan Province. The results of fine-grained soil prospecting method and metal mobile extraction measurement show that both methods can well indicate the anomalies of underlying polymetallic orebodies in the loess overburden area and, at the same time, the mobile extraction method further enhances the abnormal indication of ore-forming elements to the orebody, so both methods can be used as effective means in search for concealed polymetallic deposits in the loess overburden area.
|
Received: 23 June 2020
Published: 20 August 2021
|
|
Corresponding Authors:
ZHANG Bi-Min
E-mail: 2001180114@cugb.edu.cn;zhangbimin@igge.cn
|
|
|
|
24]) ">
|
Sketch geological map of Xiaoshan area(modified according to reference[24])
|
|
Sampling sites in Zhonghedi test area
|
序号 | 分析项目 | 分析方法 | 1 | Bi、Cd、Co、Cu、Mo、Nb、Ni、Pb、Th、U、W、Zn | 等离子体质谱法(ICP-MS) | 2 | Be、Li、V、MgO、CaO、Na2O | 等离子体光谱法(ICP-AES) | 3 | Ba、Cr、Mn、P、Rb、S、Ti、Zr、SiO2、Al2O3、TFe2O3、K2O | X射线荧光光谱法(XRF) | 4 | Ag、B、Sn | 发射光谱法(ES) | 5 | Au | 无火焰原子吸收光谱法(AAN) | 6 | As、Hg、Sb | 原子荧光光谱法(AFS) |
|
Soil sample analytical method
|
指标 | 记录数 | 最小值 | 中位数 | 最大值 | 平均值 | 标准差 | 剔除异常点后 | 异常 强度 | 异常 衬度 | 平均值 | 标准差 | 异常下限 | Au | 165 | 1.08 | 2.61 | 9.45 | 2.83 | 1.00 | 2.75 | 0.75 | 4.25 | 5.02 | 1.83 | Ag | 165 | 44.6 | 82.5 | 3792 | 120 | 302 | 98.0 | 96.0 | 290 | 720 | 7.34 | Pb | 165 | 22.4 | 28.4 | 617 | 33.9 | 47.8 | 29.4 | 7.28 | 43.9 | 73.6 | 2.51 | Zn | 165 | 63.0 | 78.9 | 1955 | 101 | 156 | 85.4 | 28.6 | 143 | 222 | 2.61 | As | 165 | 6.45 | 13.8 | 37.0 | 14.0 | 2.81 | 13.7 | 1.70 | 17.1 | | | Sb | 165 | 0.92 | 1.22 | 219 | 2.65 | 16.9 | 1.33 | 0.49 | 2.30 | 3.80 | 2.86 | Cu | 165 | 21.5 | 27.2 | 83.6 | 27.8 | 5.06 | 27.5 | 2.59 | 32.6 | 35.8 | 1.30 | Rb | 165 | 74.8 | 110 | 129 | 108 | 8.49 | 108 | 8.49 | 125 | 129 | 1.19 | P | 165 | 227 | 626 | 1711 | 659 | 212 | 637 | 164 | 966 | 1054 | 1.65 | S | 165 | 76.5 | 156 | 369 | 164 | 51.5 | 160 | 42.3 | 244 | 264 | 1.65 | Ba | 165 | 450 | 554 | 957 | 567 | 69.9 | 556 | 35.4 | 626 | 690 | 1.24 | Ti | 165 | 4092 | 4427 | 5591 | 4446 | 186 | 4425 | 124 | 4672 | 4842 | 1.09 | V | 165 | 75.9 | 87.0 | 136 | 88.6 | 8.60 | 87.5 | 5.73 | 98.9 | 105 | 1.20 | Cr | 165 | 66.2 | 75.3 | 200 | 77.2 | 12.0 | 76.2 | 6.51 | 89.2 | 102 | 1.34 | Mn | 165 | 385 | 656 | 2867 | 714 | 302 | 679 | 152 | 983 | 1326 | 1.92 | Sr | 165 | 85.6 | 121 | 202 | 123 | 16.4 | 122 | 13.5 | 149 | 158 | 1.30 | Zr | 165 | 142 | 303 | 411 | 301 | 38.4 | 301 | 38.4 | 378 | 396 | 1.32 | Nb | 165 | 9.00 | 15.6 | 17.1 | 15.3 | 1.38 | 15.3 | 1.38 | 18.1 | | | Li | 165 | 23.0 | 37.4 | 67.9 | 37.5 | 4.05 | 37.3 | 3.29 | 43.9 | 46.1 | 1.24 | Be | 165 | 1.82 | 2.40 | 2.78 | 2.37 | 0.17 | 2.37 | 0.17 | 2.71 | 2.76 | 1.16 | Co | 165 | 11.2 | 14.3 | 33.8 | 14.8 | 2.84 | 14.4 | 1.52 | 17.4 | 20.4 | 1.42 | Ni | 165 | 27.4 | 33.5 | 44.5 | 35.7 | 2.90 | 35.6 | 2.83 | 41.3 | 42.4 | 1.19 | Mo | 165 | 0.39 | 0.71 | 1.43 | 0.72 | 0.11 | 0.72 | 0.10 | 0.92 | 0.97 | 1.35 | Cd | 165 | 88.0 | 208 | 6126 | 283 | 512 | 231 | 106 | 443 | 630 | 2.73 | W | 165 | 1.28 | 1.96 | 4.89 | 1.97 | 0.27 | 2.27 | 0.14 | 2.55 | | | Th | 165 | 3.85 | 13.3 | 16.0 | 12.9 | 1.84 | 12.9 | 1.84 | 16.6 | | | U | 165 | 1.23 | 2.42 | 3.34 | 2.40 | 0.31 | 2.40 | 0.30 | 3.00 | 3.03 | 1.26 | B | 165 | 28.7 | 60.8 | 85.2 | 59.6 | 9.45 | 59.6 | 9.45 | 78.5 | 81.6 | 1.37 | Sn | 165 | 2.08 | 3.29 | 5.58 | 3.28 | 0.45 | 3.24 | 0.36 | 3.96 | 4.22 | 1.30 | Bi | 165 | 0.24 | 0.40 | 0.60 | 0.40 | 0.050 | 0.40 | 0.050 | 0.50 | 0.53 | 1.33 | Hg | 165 | 4.66 | 28.5 | 607 | 35.8 | 48.4 | 31.2 | 12.2 | 55.5 | 74.3 | 2.38 | Si | 165 | 45.9 | 61.2 | 65.3 | 60.2 | 3.33 | 60.2 | 3.33 | 66.9 | | | Al2 | 165 | 11.8 | 14.0 | 17.6 | 14.0 | 0.48 | 14.0 | 0.70 | 15.4 | 15.6 | 1.11 | TFe2 | 165 | 4.21 | 5.12 | 9.11 | 5.26 | 0.71 | 5.14 | 0.38 | 5.90 | 6.29 | 1.22 | MgO* | 165 | 1.33 | 1.69 | 3.11 | 1.71 | 0.22 | 1.68 | 0.13 | 1.94 | 2.17 | 1.29 | CaO* | 165 | 0.84 | 1.34 | 10.4 | 1.99 | 1.82 | 1.70 | 1.05 | 3.80 | 5.37 | 3.16 | Na2O* | 165 | 0.38 | 1.02 | 1.36 | 0.98 | 0.19 | 0.98 | 0.19 | 1.36 | 1.36 | 1.00 | K2O* | 165 | 1.87 | 2.42 | 3.37 | 2.42 | 0.19 | 2.41 | 0.17 | 2.75 | 2.76 | 1.15 |
|
Statistics element content of fine grain soils in Zhonghedi
|
元素 | 记录数 | 最小值 | 中位数 | 最大值 | 平均值 | 标准差 | 剔除异常点后 | 异常 强度 | 异常 衬度 | 平均值 | 标准差 | 异常下限 | Au | 165 | 0.090 | 0.52 | 1.44 | 0.57 | 0.28 | 0.56 | 0.27 | 1.10 | 1.23 | 2.20 | Ag | 165 | 3.06 | 18.6 | 671 | 25.4 | 52.3 | 21.5 | 13.9 | 49.3 | 73.8 | 3.44 | Pb | 165 | 1.12 | 2.62 | 95.7 | 3.72 | 7.83 | 2.95 | 1.67 | 6.29 | 10.9 | 3.69 | Zn | 165 | 0.31 | 1.23 | 26.8 | 1.97 | 2.93 | 1.62 | 1.25 | 4.12 | 6.50 | 4.01 | As | 165 | 0.010 | 0.050 | 0.36 | 0.060 | 0.040 | 0.050 | 0.030 | 0.13 | 0.15 | 3.00 | Sb | 165 | 0.002 | 0.005 | 0.013 | 0.006 | 0.002 | 0.006 | 0.002 | 0.009 | 0.011 | 1.83 | Cu | 165 | 0.78 | 2.16 | 8.91 | 2.29 | 0.95 | 2.19 | 0.64 | 3.46 | 3.88 | 1.77 | Ba | 165 | 10.8 | 35.7 | 61.7 | 36.6 | 8.70 | 36.6 | 8.70 | 54.0 | 57.0 | 1.56 | Ti | 165 | 51.8 | 120 | 1286 | 159 | 131 | 150 | 89.4 | 329 | 407 | 2.71 | V | 165 | 69.1 | 119 | 431 | 125 | 44.3 | 122 | 29.5 | 181 | 199 | 1.63 | Sr | 165 | 4.94 | 7.94 | 16.3 | 8.29 | 1.87 | 8.20 | 1.71 | 11.6 | 12.6 | 1.54 | Li | 165 | 18.8 | 72.8 | 234 | 77.3 | 31.2 | 76.0 | 27.8 | 132 | 139 | 1.83 | Be | 165 | 0.50 | 3.08 | 14.5 | 3.33 | 1.77 | 3.12 | 1.18 | 5.49 | 6.29 | 2.02 | Sc | 165 | 197 | 279 | 741 | 319 | 93.8 | 314 | 85.1 | 484 | 525 | 1.67 | Co | 165 | 120 | 564 | 2823 | 646 | 347 | 633 | 303 | 1239 | 1368 | 2.16 | Ni | 165 | 220 | 655 | 5555 | 847 | 644 | 805 | 505 | 1816 | 2066 | 2.57 | Mo | 165 | 16.2 | 47.3 | 376 | 60.2 | 50.5 | 53.0 | 26.3 | 106 | 145 | 2.74 | W | 165 | 13.8 | 29.6 | 114 | 31.2 | 11.0 | 30.5 | 8.55 | 47.6 | 50.6 | 1.66 | Th | 165 | 6.45 | 26.2 | 96.9 | 28.7 | 14.4 | 28.0 | 12.9 | 53.9 | 65.2 | 2.33 | U | 165 | 14.8 | 43.8 | 307 | 58.9 | 41.0 | 56.5 | 34.3 | 125 | 147 | 2.60 | Bi | 165 | 0.001 | 0.007 | 0.026 | 0.008 | 0.005 | 0.007 | 0.004 | 0.015 | 0.019 | 2.71 | Hg | 165 | 0.06 | 0.03 | 1.38 | 0.35 | 0.02 | 0.33 | 0.13 | 0.60 | 0.70 | 2.12 | Mg | 165 | 69.2 | 217 | 671 | 234 | 108 | 230 | 99.3 | 429 | 477 | 2.07 | K | 165 | 81.3 | 140 | 886 | 172 | 101 | 159 | 62.4 | 284 | 353 | 2.22 | Fe | 165 | 9.02 | 19.7 | 153 | 25.3 | 18.2 | 23.5 | 12.4 | 48.4 | 62.7 | 2.67 | Ca | 165 | 2375 | 4565 | 8652 | 4689 | 1126 | 4643 | 1053 | 6749 | 7321 | 1.60 | Al | 165 | 21.9 | 37.7 | 149 | 41.2 | 15.9 | 39.9 | 10.4 | 60.7 | 75.3 | 1.89 |
|
Statistics element content of metal mobile extraction in Zhonghedi
|
|
Geochemical maps of Ag、As、Cu、Pb、Sb and Zn in fine grain soils
|
|
Geochemical maps of Ag、As、Cu、Pb、Sb and Zn in metal mobile extraction
|
[1] |
王学求, 刘占元, 白金峰, 等. 深穿透地球化学对比研究两例[J]. 物探化探计算技术, 2005,27(3):250-255.
|
[1] |
Wang X Q, Liu Z Y, Bai J F, et al. Deep-penetration geochemistry comparison studies of two concealed deposits[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005,27(3):250-255.
|
[2] |
王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998,22(3):166-169.
|
[2] |
Wang X Q. Deep-penetration exploration geochemistry[J]. Geophysical and Geochemical Exploration, 1998,22(3):166-169.
|
[3] |
张必敏, 王学求, 徐善法, 等. 盆地金属矿穿透性地球化学勘查模型与案例[J]. 中国地质, 2016,43(5):1697-1709.
|
[3] |
Zhang B M, Wang X Q, Xu S F, et al. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins[J]. Geology in China, 2016,43(5):1697-1709.
|
[4] |
Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.
|
[5] |
Clark J R, Meier A L, Riddle G. Enzyme leaching of surficial geochemical samples for defecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota[J]. Gold, 1990,90 : 189-207.
|
[6] |
文美兰, 罗先熔, 熊健, 等. 地电化学法在南澳大利亚寻找隐伏金矿的研究[J]. 地质与勘探, 2010,46(1):153-159.
|
[6] |
Wen M L, Luo X R, Xiong J, et al. Electro-geochemical method in the search of concealed gold deposits in South Australia[J]. Geology and Exploration, 2010,46(1):153-159.
|
[7] |
Antropova L V, Goldberg I S, Voroshilov N A, et al. New methods of regional exploration for blind mineralization: Application in the USSR[J]. Journal of Geochemical Exploration, 1992,43(2):157-166.
|
[8] |
Mann A W, Birrell R D, Gay L M, et al. Partial extractions and mobile metal ions[C]//Camuti K S. Extended Abstracts of the 17th IGES, 1995: 31-34.
|
[9] |
Wang X Q. Leaching of mobile forms of metals in overburden: Development and application[J]. Journal of Geochemical Exploration, 1998,61(1-3):39-55.
|
[10] |
张必敏, 王学求, 叶荣, 等. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J]. 桂林理工大学学报, 2019,39(2):301-310.
|
[10] |
Zhang B M, Wang X Q, Ye R, et al. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J]. Journal of Guilin University of Technology, 2019,39(2):301-310.
|
[11] |
文雪琴. 荒漠戈壁区深穿透地球化学的理论方法及应用研究[D]. 西安:长安大学, 2008.
|
[11] |
Wen X Q. Deep-penetrating geochemistry: Theoretical consideration, methodology and application in desert terrain[D]. Xi'an:Chang’an University, 2008.
|
[12] |
王晓佳, 鲁美, 王振凯, 等. 申家窑金矿床地气测量异常特征[J]. 地质与勘探, 2016,52(4):667-677.
|
[12] |
Wang X J, Lu M, Wang Z K, et al. Characteristics of geogas anomalies measured in the Shengjiayao gold deposit of Shan County, Henan Province[J]. Geology and Exploration, 2016,52(4):667-677.
|
[13] |
杨笑笑, 罗先熔, 文美兰, 等. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019,43(2):244-256.
|
[13] |
Yang X X, Luo X R, Wen M L, et al. The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain,western Henan Province: A case study of the Shilongshan gold polymetallic ore prospecting area in Luoning County[J]. Geophysical and Geochemical Exploration, 2019,43(2):244-256.
|
[14] |
王利功. 华北陆块南缘崤山地区金银多金属矿成矿规律与成矿预测[D]. 北京:中国地质大学(北京), 2018.
|
[14] |
Wang L G. Gold and silver polymetallic ore metallogenic law and metallogenic prognosis of Xiaoshan region in the south margin of North China Craton[D]. Beijing:China University of Geosciences (Beijing), 2018.
|
[15] |
姚文生. 元素活动态提取剂作用机理与实验条件研究[D]. 北京:中国地质科学院, 2011.
|
[15] |
Yao W S. Leaching mechanism and conditions of extractans on mobile forms of elements in soils[D]. Beijing: Chinese Academy of Geological Sciences, 2011.
|
[16] |
王学求, 姚文生, 孙爱琴, 等. 贱金属元素活动态的提取剂、制备方法及提取方法[P]. 中国专利,CN201110132568.5, 2011.
|
[16] |
Wang X Q, Yao W S, Sun A Q, et al. Extractants,preparation method and extraction method on mobile forms of base metal elements[P]. National Invention Patent, CN201110132568.5, 2011.
|
[17] |
叶荣, 张必敏, 姚文生, 等. 隐伏矿床上方纳米铜颗粒存在形式与成因[J]. 地学前缘, 2012,19(3):120-129.
|
[17] |
Ye R, Zhang B M, Yao W S, et al. Occurrences and formation of copper nanoparticles over the concealed ore deposits[J]. Earth Science Frontiers, 2012,19(3):120-129.
|
[18] |
Noble R R P, Lau I C, Anand R R, et al. Refining fine fraction soil extraction methods and analysis for mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2019,20(1):113-128.
|
[19] |
Noble R R P, Morris P A, Anand R R, et al. Application of ultra fine fraction soil extraction and analysis for mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2020,20(1):129-154.
|
[20] |
Morris P A. Fine fraction regolith chemistry from the East Wongatha area, Western Australia: Tracing bedrock and mineralization through thick cover[J]. Geochemistry: Exploration, Environment, Analysis, 2013,13(1):21-40.
|
[21] |
刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.
|
[21] |
Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit,Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.
|
[22] |
常云真, 贾慧敏, 王琦, 等. 豫西崤山中河岩体的岩石学和地球化学特征及地质意义[J]. 世界地质, 2017,36(4):1072-1082.
|
[22] |
Chang Y Z, Jia H M, Wang Q, et al. Petrologic and geochemical characteristics and geological significance of Zhonghe rock mass in Xiaoshan, western Henan[J]. Global Geology, 2017,36(4):1072-1082.
|
[23] |
曾威, 常云真, 司马献章, 等. 河南省崤山地区中河银多金属矿床花岗斑岩体形成时代及其地质意义[J]. 地质调查与研究, 2017,40(2):81-88.
|
[23] |
Zeng W, Chang Y Z, Sima X Z, et al. Zircon U-Pb dating of granite porphyry in Zhonghe silver polymetallic deposit and its geological implication, Xiaoshan area in Henan Province[J]. Geological Survey and Research, 2017,40(2):81-88.
|
[24] |
李磊, 孙卫志, 孟宪锋, 等. 华北陆块南缘崤山地区燕山期花岗岩类地球化学Sr-Nd-Pb同位素特征及其地质意义[J]. 岩石学报, 2013,29(8):2635-2652.
|
[24] |
Li L, Sun W Z, Meng X F, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the granitoids of Xiaoshan mountain areaon the southern margin of North China block and its geological significance[J]. Acta Petrologica Sinica, 2013,29(8):2635-2652.
|
[25] |
武广, 陈毓川, 李宗彦, 等. 豫西银家沟硫铁多金属矿床Re-Os和40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 2013,32(4):809-822.
|
[25] |
Wu G, Chen Y C, Li Z Y, et al. Molybdenite Re-Os and sericite 40Ar-39Ar ages of Yinjiagou pyrite-polymetallic deposit in western Henan Province, and their geological significance [J]. Mineral Deposits, 2013,32(4):809-822.
|
[26] |
冯昂, 王占峰, 米长征, 等. 河南省寺家沟金矿床地质特征及找矿方向[J]. 矿产与地质, 2015,29(3):311-315.
|
[26] |
Feng A, Wang Z F, Mi C Z, et al. Geological characteristics and prospecting direction of Sijiagou gold deposit in Henan[J]. Mineral Resources and Geology, 2015,29(3):311-315.
|
[27] |
陈衍景, 富士谷. 申家窑金矿地质地球化学特征及成矿模式[J]. 地质与勘探, 1992,28(4):47-52.
|
[27] |
Chen Y J, Fu S G. Mineralization model and geological-geochemical features of the Shenjiayao gold deposit[J]. Geology and Prospecting, 1992,28(4):47-52.
|
[28] |
陈衍景, 郭抗衡. 河南银家沟矽卡岩型金矿的地质地球化学特征及成因[J]. 矿床地质, 1993,12(3):265-272.
|
[28] |
Chen Y J, Guo K H. Geology, geochemistry and genesis of the Yinjiagouskarn type gold deposit, Henan Province[J]. Mineral Deposits, 1993,12(3):265-272.
|
[29] |
陈衍景, 富士谷, 金持跃, 等. 论砾岩层控型半宽金矿的地质特征和成因[J]. 铀矿地质, 1995,11(6):334-343.
|
[29] |
Chen Y J, Fu S G, Jin C Y, et al. On the geologic characteristics and genesis of the conglomerate strataboundtype Bankuan Gold Deposit[J]. Uranium Geology, 1995,11(6):334-343.
|
[30] |
黄自力, 刘清泉, 李永峰, 等. 河南省大方山—葫芦峪金矿床流体包裹体研究[J]. 矿产与地质, 2013,27(5):396-402.
|
[30] |
Huang Z L, Liu Q Q, Li Y F, et al. Fluid inclusions of Dafangshan-Huluyv Au deposit in Henan[J]. Mineral Resources and Geology, 2013,27(5):396-402.
|
[31] |
罗正传, 叶晨, 曹廷坤, 等. 豫西葫芦峪金矿床同位素特征及其地质意义[J]. 黄金地质, 2014,35(9):12-17.
|
[31] |
Luo Z Z, Ye C, Cao T K, et al. Isotopic characteristics of Huluyugold deposit in western Henan and its geological significance[J]. Gold Geology, 2014,35(9):12-17.
|
[32] |
罗正传, 魏明君, 陈树民, 等. 河南大方山金矿床铅硫同位素组成及其成矿物质来源研究[J]. 黄金地质, 2014,35(12):14-18.
|
[32] |
Luo Z Z, Wei M J, Chen S M, et al. Isotopic compositions of lead and sulfur in Dafangshan gold deposit and its ore-forming materials source[J]. Gold Geology, 2014,35(12):14-18.
|
[33] |
刘军, 武广, 陈方伍, 等. 河南省石寨沟金矿床成矿流体特征及硫铅同位素研究[J]. 中国地质, 2012,39(6):1798-1811.
|
[33] |
Liu J, Wu G, Chen F W, et al. Fluid inclusion and S,Pb isotope study of the Shizhaigou gold deposit in Henan Province[J]. Geology in China, 2012,39(6):1798-1811.
|
[34] |
范海洋. 河南省崤山东部银多金属矿床成矿作用[D]. 北京:中国地质科学院, 2018.
|
[34] |
Fan H Y. Mineralization of Ag-polymetallic ore peposits in the Eastern Xiaoshan, Henan Province[D]. Beijing:Chinese Academy of Geological Sciences, 2018.
|
[35] |
陈永清, 纪宏金. 标准化区域地球化学图的编制方法及应用效果[J]. 长春地质学院学报, 1995,25(2):216-221.
|
[35] |
Chen Y Q, Ji H J. The compiling method of standardized geochemical map and its application effects[J]. Journal of Changchun University of Earth Science, 1995,25(2):216-221.
|
[36] |
高艳芳, 陈军威, 张玉领, 等. 对地球化学图编制过程的深层探究[J]. 物探化探计算技术, 2015,37(4):538-546.
|
[36] |
Gao Y F, Chen J W, Zhang Y L, et al. Further research on geochemical mapping[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015,37(4):538-546.
|
[37] |
Sparks D L. Environmental soil chemistry:An overview[M]. Environmental Soil Chemistry(Second Edition), San Diego C.A.:Academic Press, 2003: 1-42.
|
[38] |
王学求. 深穿透地球化学迁移模型[J]. 地质通报, 2005,24(10):892-896.
|
[38] |
Wang X Q. Conceptual model of deep-penetrating geochemical migration[J]. Geological Bulletin of China, 2005,24(10):892-896.
|
|
|
|