|
|
|
| Metal mineral exploration based on tectono-geochemistry weak information extraction |
| DUO De-Ying, LIU Xiu-Feng, LI Bo |
| The First Geological Exploration Institute of Qinghai Province, Haidong 810600, China |
|
|
|
|
Abstract To identify areas potentially rich in metal minerals, this study proposed a prospecting method based on tectono-geochemistry weak information extraction. After the exploration scope was determined, sampling points were arranged using a grid pattern, followed by chemical tests on the collected samples. Through static extraction, centrifugation, and dynamic extraction, weak tectono-geochemical information in the samples was extracted. Then, the distribution of metal minerals within fault zones was analyzed based on the extraction results, and thus metal mineral prospecting was completed. During the geological exploration in the Wuminggou-Baidungou area in the Wulonggou, Dulan County, Qinghai Province, the mineral structures within the exploration area were analyzed using extracted weak tectono-geochemical information. As a result, among the 17 fault zones identified, a 500 m long metal ore body was delineated in fault zone Ⅳ, six ore bodies with lengths ranging from 180 to 400 m were determined in fault zone Ⅵ, and two ore bodies with lengths ranging from 550 to 800 m were delineated in fault zone Ⅺ. The remaining ore bodies were identified as blind ore bodies. The application of tectono-geochemistry weak information extraction for metal mineral prospecting yielded significant achievements, meeting the practical needs of metal mineral exploration. This method can be widely applied to metal mineral prospecting in similar geological settings.
|
|
Received: 03 July 2024
Published: 23 October 2025
|
|
|
|
|
|
|
Layout of sampling points
|
| 参数项 | 参数范围 | | 采样深度 | -3~0 mm | | 采样锥直径 | 1.1 mm | | 气流量 | 14 L/min | | 蠕动泵速 | 25 r/min | | 截取锥直径 | 0.8 mm | | 炬管水平位置 | 4.0~4.3 mm | | 炬管垂直位置 | 2.6~3.0 mm |
|
Sampling parameter settings
|
| 元素 | 检出限/10-6 | 相对误差范围/% | 合格率/% | | Cd | 0.05 | ±5 | 98 | | Pb | 0.1 | ±4 | 97.5 | | Sn | 0.2 | ±6 | 96.5 | | Au | 0.001 | ±3 | 99 | | As | 0.01 | ±7 | 95 | | Sb | 0.005 | ±6 | 96 | | U | 0.02 | ±8 | 94.5 | | Rb | 1 | ±9 | 94 |
|
The detection limits and relative error ranges of each element are statistically analyzed based on the pass rate
|
|
Dynamic extraction process
|
|
Traffic location of the study area
|
|
Partial display of fault zones in the study area
|
|
Static extraction test results
|
| 元素 | 样品数 | 含量/(ng·mL-1) | | Cd | 26 | 0.56 | | Pb | 496 | 0.14 | | Sn | 62 | 1.34 | | Au | 56 | 0.53 | | As | 565 | 0.66 | | Sb | 79 | 0.05 | | U | 99 | 0.03 | | Rb | 133 | 0.14 |
|
Extraction results of weak geochemical information from sample structure
|
| 元素 | 背景值/ (ng·mL-1) | 异常下限/ (ng·mL-1) | 弱异常分带界限/ (ng·mL-1) | | Cd | 0.2 | 0.4 | 0.4~0.8 | | Pb | 0.1 | 0.25 | 0.25~0.5 | | Sn | 1.0 | 2.2 | 2.2~4.4 | | Au | 0.3 | 0.7 | 0.7~1.4 | | As | 0.5 | 1.2 | 1.2~2.4 | | Sb | 0.03 | 0.07 | 0.07~0.14 | | U | 0.02 | 0.05 | 0.05~0.1 | | Rb | 0.12 | 0.26 | 0.26~0.52 |
|
Background values, lower anomaly limits, and weak anomaly band boundaries of each element in the sample
|
|
Exploration area structure 1—Quaternary alluvial deposits; 2—late Triassic altered plagioclase granite; 3—late Triassic biotite diorite granite; 4—middle Triassic biotite granodiorite; 5—middle Triassic quartz diorite; 6—middle Triassic diorite porphyry; 7—middle Triassic granodiorite; 8—middle Triassic granite containing dark amphibolite inclusions; 9—late Permian diorite granite; 10—early Devonian amphibolite gabbro; 11—Ordovician system Qimantage Group volcanic rock formation limestone, siliceous slate, volcanic breccia, et al.; 12—Qingbaikou system Qiujidonggou Formation phyllite and crystalline limestone; 13—Changcheng system Xiaomiao Formation; 14—Paleoproterozoic Jinshuikou rock group black cloud gneiss; 15—Paleoproterozoic Jinshuikou rock group amphibolite gneiss; 16—black mica granite vein; 17—geological boundary; 18—measured reverse fault; 19—fault of unknown nature; 20—ductile shear band; 21—gold bearing alteration zone and its identification number; 22—exploration area; 23—location of the fault zone
|
|
Results of the accuracy rate of metal mineral detection
|
| [1] |
施玉北, 曾妍, 李蓉, 等. 滇西地区稀有金属宝石矿床成矿系列成矿规律与找矿方向[J]. 地球学报, 2023, 44(4):707-722.
|
| [1] |
Shi Y B, Zeng Y, Li R, et al. Metallogenic series,regularities,and prospecting directions of rare metal gemstone deposits in west Yunnan[J]. Acta Geoscientica Sinica, 2023, 44(4):707-722.
|
| [2] |
游越新, 邓居智, 陈辉, 等. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3):638-647.
|
| [2] |
You Y X, Deng J Z, Chen H, et al. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang,Yunnan[J] Geophysical and Geochemical Exploration, 2023, 47(3):638-647.
|
| [3] |
王瑞廷, 刘凯, 冀月飞, 等. 陕西柞水—山阳金铜银多金属矿集区典型矿床模型和找矿预测[J]. 地质通报, 2023, 42(6):895-908.
|
| [3] |
Wang R T, Liu K, Ji Y F, et al. Typical deposit model and prospecting prediction of the Zhashui-Shanyang Au-Cu-Ag polymetallic ore-concentration area,Shaanxi Province[J]. Geological Bulletin of China, 2023, 42(6):895-908.
|
| [4] |
吴义布, 余君鹏, 司豪佳, 等. 甘肃阿克塞县变粒岩型铌钽矿综合找矿方法及找矿模型[J]. 地质与勘探, 2023, 59(3):570-579.
|
| [4] |
Wu Y B, Yu J P, Si H J, et al. Comprehensive prospecting methods and model of the leptynite-type Nb-Ta deposit in Aksai County,Gansu Province[J]. Geology and Exploration, 2023, 59(3):570-579.
|
| [5] |
宋威方, 刘建中, 吴攀, 等. 构造地球化学弱信息提取方法在黔西南卡林型金矿找矿中的应用[J]. 物探与化探, 2022, 46(6):1338-1348.
|
| [5] |
Song W F, Liu J Z, Wu P, et al. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1338-1348.
|
| [6] |
冯军, 张琪, 罗建民. 深度挖掘数据潜在价值提高找矿靶区定量优选精度[J]. 地学前缘, 2022, 29(4):403-411.
|
| [6] |
Feng J, Zhang Q, Luo J M. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas[J] Earth Science Frontiers, 2022, 29 (4):403-411.
|
| [7] |
刘海飞, 柳建新, 刘嵘, 等. 激发极化法在有色金属矿产勘查中的研究进展[J]. 中国有色金属学报, 2023, 33(1):203-222.
|
| [7] |
Liu H F, Liu J X, Liu R, et al. Research progress of induced polarization method in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):203-222.
|
| [8] |
崔益安, 柳建新, 郭友军, 等. 电阻率法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报, 2023, 33(1):223-239.
|
| [8] |
Cui Y A, Liu J X, Guo Y J, et al. Research progress of resistivity method in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33 (1):223-239.
|
| [9] |
任政勇, 柳建新, 岳国璇, 等. 重力与磁法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报, 2023, 33(1):21.
|
| [9] |
Ren Z Y, Liu J X, Yue G X, et al. Research progress of gravity and magnetic methods in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):21.
|
| [10] |
郭振威, 李方达, 柳建新, 等. 海洋有色金属矿产地球物理勘探进展[J]. 中国有色金属学报, 2023, 33(1):22.
|
| [10] |
Guo Z W, Li F D, Liu J X, et al. Progress in geophysical exploration of marine nonferrous metal minerals[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):22.
|
| [11] |
刘彦良, 高雅, 谢洪春, 等. 甘肃北山铅炉子沟地区金属矿成矿规律及矿产预测[J]. 地质与勘探, 2021, 57(2):269-280.
|
| [11] |
Liu Y L, Gao Y, Xie H C, et al. Metallogenic regularity and mineral prediction of metal deposits in the qianluzigou zone,Beishan area,Gansu Province[J]. Geology and Exploration, 2021, 57(2):269-280.
|
| [12] |
窦小雨, 郭小刚, 周宏, 等. 甘肃白银厂铜多金属矿田地球化学场特征及信息提取[J]. 地质与勘探, 2022, 58(6):1139-1153.
|
| [12] |
Dou X Y, Guo X G, Zhou H, et al. Geochemical field characteristics and information extraction of the Baiyinchang copper polymetallic ore field in Gansu Province[J]. Geology and Exploration, 2022, 58(6):1139-1153.
|
| [13] |
雷镇, 陶思源, 李波, 等. 湘南黄沙坪铜多金属矿床-256 m中段构造地球化学特征及找矿预测[J]. 中国有色金属学报, 2022, 32(9):2835-2855.
|
| [13] |
Lei Z, Tao S Y, Li B, et al. Tectono-geochemistry characteristics and prospecting prediction of -256 m level tunnel of Huangshaping copper polymetallic deposit in Southern Hunan[J] The Chinese Journal of Nonferrous Metals, 2022, 32 (9):2835-2855.
|
| [14] |
赵吉昌, 范应, 雷一兰, 等. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4):923-932.
|
| [14] |
Zhao J C, Fan Y, Lei Y L, et al. The application of tectonogeochemical cuttings survey to gold prospecting in Nanshan area of Danghe,Gansu Province[J] Geophysical and Geochemical Exploration, 2021, 45 (4):923-932.
|
| [15] |
程志中, 袁慧香, 彭琳琳, 等. 基岩区寻找隐伏矿的地球化学方法:构造地球化学测量[J]. 地学前缘, 2021, 28(3):328-337.
|
| [15] |
Cheng Z Z, Yuan H X, Peng L L, et al. A geochemical method for finding concealed ore deposits in bedrock outcrop area:Application of tectono-geochemical survey[J] Earth Science Frontiers, 2021, 28 (3):328-337.
|
| [16] |
熊盛青, 徐学义. 航空地球物理在战略性矿产勘查中的应用前景[J]. 地球科学与环境学报, 2023, 45(2):143-156.
|
| [16] |
Xiong S Q, Xu X Y. Application prospect of aerogeophysics in strategic mineral exploration[J]. Journal of Earth Sciences and Environment, 2023, 45 (2):143-156.
|
| [17] |
金谋顺, 高永宝, 李侃, 等. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例[J]. 西北地质, 2019, 52(4):222-231.
|
| [17] |
Jin M S, Gao Y B, Li K, et al. Remote sensing prospecting method for pegmatite type rare metal deposit—Taking Dahongliutan area in western Kunlun for example[J]. Northwestern Geology, 2019, 52 (4):222-231.
|
| [18] |
李新年. 地质矿产勘查深部找矿方法的探讨[J]. 粘接, 2021, 46(5):133-136.
|
| [18] |
Li X N. Discussion on deep prospecting methods for geological and mineral exploration[J]. Adhesion, 2021, 46 (5):133-136.
|
| [19] |
Saleh G M, Kamar M S, Mohamed G A, et al. Petrochemistry,rare metals-bearing minerals and spectrometric exploration in Khour Abalea,Abu Rusheid area,Eastern Desert,Egypt[J]. Journal of African Earth Sciences, 2023,205:105005.
|
| [20] |
Zuo L, Wang G W, Carranza E J M, et al. Short-wavelength infrared spectral analysis and 3D vector modeling for deep exploration in the weilasituo magmatic-hydrothermal Li-Sn polymetallic deposit,Inner Mongolia,NE China[J]. Natural Resources Research, 2022, 31(6):3121-3153.
|
| [21] |
Chen J, Yang F C, Bedini E, et al. Application of the matched filtering method to study the stream sediment geochemistry and prospecting prediction of the Baiyun gold deposit,qingchengzi ore field,China[J]. Mining,Metallurgy & Exploration, 2024, 41(1):379-394.
|
| [22] |
Hill E J, Fabris A, Uvarova Y, et al. Improving geological logging of drill holes using geochemical data and data analytics for mineral exploration in the Gawler Ranges,South Australia[J]. Australian Journal of Earth Sciences, 2023, 70(8):1067-1093.
|
| [1] |
SONG Wei-Fang, LIU Jian-Zhong, WU Pan, LI Jun-Hai, WANG Ze-Peng, YANG Cheng-Fu, TAN Qin-Ping, WANG Da-Fu. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1338-1348. |
| [2] |
LUO Wei-Feng, HU Zhi-Fang, GAN Fu-Ping, ZHANG Qing-Yu, KANG Hai-Xia, ZHANG Yun-Xiao. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 824-829. |
|
|
|
|