|
|
Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China |
LUO Wei-Feng1( ), HU Zhi-Fang1( ), GAN Fu-Ping2, ZHANG Qing-Yu2, KANG Hai-Xia1, ZHANG Yun-Xiao1 |
1. Oil & Gas Survey Center, China Geological Survey, Beijing 100083, China 2. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China |
|
|
Abstract The drilling engineering for shale gas in carbonate areas in China is facing prominent carbonate karst. It is necessary to carry out near-surface geophysical prospecting before drilling and reasonably select the well locations in order to ensure the safety of the well site and reduce the drilling engineering risks. Taking the siting of Well Guirongye-1 in Rong'an County, Liuzhou City, Guangxi Province as an example, this study conducted the application research of well siting before drilling comprehensively using three geophysical prospecting methods, namely the high-density resistivity method, the audio-frequency magnetotellurics method, and radon survey, achieving satisfactory results. Well Guirongye-1 did not encounter a fault fracture zone near the surface, which is basically consistent with the interpretation results of comprehensive geophysical prospecting. This result indicates that the comprehensive geophysical prospecting method is feasible and effective in the siting of shale gas exploration wells in the carbonate areas in south China. This study will provide a certain reference for the well siting before drilling in similar areas in the future.
|
Received: 08 September 2021
Published: 17 August 2022
|
|
Corresponding Authors:
HU Zhi-Fang
E-mail: luoweifeng_08@163.com;yjyzhshzf@163.com
|
|
|
|
|
Structural zoning map of Guizhong Depression
|
地层 | 符号 | 岩性特征 | 电阻率/(Ω·m) | 第四系 | Q | 黏土 | 1~100 | 上石炭统 | C2 | 灰岩、白云岩 | 939~11692 | 下石炭统 | C1 | 泥质灰岩、泥页岩 | 246~1370 | 上泥盆统 | D3 | 硅质岩、扁豆状灰岩 | 366~6441 | 中—下泥盆统 | D2-D1 | 泥灰岩、泥质页岩 | 49~4925 |
|
Statistical table of rock physical properties in the study area
|
|
Line layout diagram
|
|
Integrated geophysical results map
|
[1] |
章术, 尹亮先, 首照兵. 贵州铜仁地区页岩气钻井施工难点及对策[J]. 探矿工程, 2017, 44(5):10-13.
|
[1] |
Zhang S, Yin L X, Shou Z B. Difficulties of Shale Gas Well Drilling Construction in Tonggren of Guizhou and the Countermeasures[J]. Exploration Engineering, 2017, 44(5): 10-13.
|
[2] |
周晓庆, 薛强, 罗杰. 四川盆地天然气钻前工程选址风险识别与防控措施[J]. 天然气工业, 2012, 32(8):105-107,136.
|
[2] |
Zhou X Q, Xue Q, Luo J. Risk identification and prevention measures for pre-drilling site selection in the Sichuan Basin[J]. Natural Gas Industry, 2012, 32(8): 105-107,136.
|
[3] |
王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
|
[3] |
Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582.
|
[4] |
赵广学, 阮帅, 吴肃元. 隧道勘探AMT 数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2):480-489.
|
[4] |
Zhao G X, Ruan S, Wu S Y. Researches on the selection of key parameters in AMT 2D nonlinear conjugate inversion for railway tunnel exploration[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 480-489.
|
[5] |
杨剑, 李华, 王桥, 等. 综合地球物理勘探快速获取城市待建区浅部三维地质特征:以成都市天府新区独角兽岛为例[J]. 地球物理学进展, 2021, 36(4):1751-1759.
|
[5] |
Yang J, Li H, Wang Q, et al. Rapid acquisition of shallow 3D geological features of undeveloped area in city by comprehensive Geophysical exploration:a case study on the Unicorn Island in Tianfu New District,Chengdu City[J]. Progress in Geophysics, 2021, 36(4): 1751-1759.
|
[6] |
孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6):1464-1469.
|
[6] |
Meng Q W. The application effect of comprehensive geophysical method in karst cave investigation of Qingshan Provincial Geopark in Jiaxiang County[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1464-1469.
|
[7] |
杨天春, 王丹齐, 张叶鹏, 等. 生产矿山岩溶灾害勘查中的综合物探应用研究[J]. 地球物理学进展, 2021, 36(3):1145-1153.
|
[7] |
Yang T C, Wang D Q, Zhang Y P, et al. Application research of comprehensive geophysical method to karst investigation in a productive mine[J]. Progress in Geophysics, 2021, 36(3): 1145-1153.
|
[8] |
叶莉, 李非, 黄小年. 综合物探技术在东北公路工程多年冻土勘察中的应用与研究[J]. 灾害学, 2018, 33(S1):25-29.
|
[8] |
Ye L, Li F, Huang X N. Application andr esearch of comprehensive geophysical prospecting technology in permafrost exploration of northeast highway project[J]. Journal of Catastrophology, 2018, 33(S1): 25-29.
|
[9] |
黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3):1352-1359.
|
[9] |
Huang Y M, Zhang X F, Xie S P, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359.
|
[10] |
高建华, 蔡耀军, 魏岩峻, 等. 综合物探在南水北调中线工程岩溶探测中的应用[J]. 工程地球物理学报, 2014, 11(4):533-536.
|
[10] |
Gao J H, Cai Y J, Wei Y J, et al. The application of comprehensive geophysical prospecting to karst detection in South-to-North water diversion middle rroute projiect[J]. Chinese Journal of Engineering Geophysics, 2014, 11(4): 533-536.
|
[11] |
李丹, 肖宽怀. 高密度电法在铁峰山2号隧道工程探测中的应用[J]. 工程地球物理学报, 2006, 3(3):197-200.
|
[11] |
Li D, Xiao K H. High density electrical resistance exploration in the No.2 tiefengshan tunnel[J]. Chinese Journal of Engineering Geophysics, 2006, 3(3): 197-200.
|
[12] |
孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.
|
[12] |
Meng F S, Zhang G, Chen M J, et al. 3D inversion of high density resistivity method based on 2D high density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 672-678.
|
[13] |
王喜迁, 孙明国, 张皓, 等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5):72-75.
|
[13] |
Wang X Q, Sun M G, Zhang H, et al. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.
|
[14] |
马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4):1489-1498.
|
[14] |
Ma J J. Anomaly identification and inference of high density resistivity method:take karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.
|
[15] |
尚彦军, 金维浚, 肖刚, 等. AMT 和高密度电法结合探测稻城LHAASO 项目区隐伏断层和基岩埋深[J]. 地球物理学进展, 2021, 36(1):250-257.
|
[15] |
Shang Y J, Jin W J, Xiao G, et al. Combination of AMT and high-density electrical method to detect buried fault and bedrock depth in the LHAASO field of Daocheng,Sichuan Province[J]. Progress in Geophysics, 2021, 36(1): 250-257.
|
[16] |
陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社, 1990.
|
[16] |
Chen L S, Wang G E. Magnetotelluric Sounding Method[M]. Beijing: Geological Publishing House, 1990.
|
[17] |
张启生. 音频大地电磁法原理及数据处理[J]. 内蒙古石油化工, 2010(19):26-28.
|
[17] |
Zhang Q S. AMT principles and data processing[J]. Inner Mongolia Petrochemical Industry, 2010 (19): 26-28.
|
[18] |
李富, 周洪福, 唐文清, 等. 物化探方法在隐伏活动断裂探测中综合研究——以安宁河秧财沟断裂为例[J]. 地球物理学进展, 2019, 34(3):1199-1205.
|
[18] |
Li F, Zhou H F, Tang W Q, et al. Comprehensive study of geophysical and geochemical methods in detecting buried active faults: taking the Yangcaigou fault in Anning River as an example[J]. Progress in Geophysics, 2019, 34(3): 1199-1205.
|
[19] |
甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连,法帕剖面探测为例[J]. 地质通报, 2012, 31(2):389-395.
|
[19] |
Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures: a case study of detection in Palian and Fapa profiles, Luxi area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 389-395.
|
[1] |
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717. |
[2] |
QIN Jian-Wen, JIANG Xiao-Teng, XIE Gui-Cheng, SUN Han-Wu, HE Liu, SUN Huai-Feng. Karst exploration in urban complex environments based on electrical resistivity tomography: A case study of Beihuan New Village in Guigang City[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 530-539. |
|
|
|
|