|
|
Quantitative analysis of seismic velocity model accuracy and its influence on migration imaging: A case study of ultradeep fault-controlled fractured-vuggy reservoirs in the Tarim Basin,China |
LIU Zhi-Yuan1,2( ), LIU Xi-Wu1,2( ), YANG Wei3, ZHANG Qing3, XIAO Yan-Jun1,2 |
1. Key Laboratory of Oil & Gas Reservoir Geophysics SINOPEC, Beijing 100083, China 2. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China 3. Northwest Oilfield Company, SINOPEC, Urumqi 830011, China |
|
|
Abstract Seismic velocity model accuracy significantly influences the quality of depth-migrated images.However,a quantitative analysis and clear understanding of this relationship remain lacking.Based on the seismic images of ultradeep fault-controlled fractured-vuggy reservoirs in the Tarim Basin,this study constructed a depth-domain numerical velocity model that approximates the conditions of subsurface media.The 3D seismic forward modeling was performed using a seismic acquisition and observation system for practical production.Different interval velocities within the numerical model were smoothed and used to quantitatively analyze their effects on reverse time migration(RTM) images based on identical parameters.Using seismic simulation data as input,the isotropic and anisotropic depth-domain velocity models were constructed following a standard industrial workflow.A quantitative analysis was subsequently conducted to analyze the differences of the constructed models and corresponding migration images from the numerical velocity model and its RTM image across different intervals and for various geological features.Overall,this study quantitatively analyzes the velocity accuracy of different velocity types in various intervals and its influence on migration imaging, obtaining several clear insights.
|
Received: 07 February 2025
Published: 07 August 2025
|
|
|
|
|
|
Three-dimensional numerical velocity model characteristics of ultra-deep fault-controlled fractured-vuggy reservoirs in the Tarim Basin
|
|
Global smoothing profile on synthetic velocity
|
|
RTM imaging profile corresponding to global smooth velocity of different scales
|
|
Smooth velocity of different layers
|
|
RTM image corresponding to smoothed velocities of different layers
|
|
Comparative sections of horizon matching for different velocity models
|
|
Percentage of velocity error between self-built velocity and original model
|
|
Self-built VTI velocity error percentage and distribution statistics
|
|
The RTM well-tie migration profiles corresponding to different velocity models
|
平均深 度/m | 平均层速度 /(m·s-1) | 层位名 | ISO速度绝对 误差/(m·s-1) | ISO速度相 对误差/% | ISO深度绝对 平均误差/m | ISO深度相 对误差/% | VTI速度绝对 误差/(m·s-1) | VTI速度相 对误差/% | VTI深度绝对 平均误差/m | VTI深度相 对误差/% | 4667 | 3820 | H1 | 123.34 | 3.2 | 70 | 1.5 | 80.2 | 2.1 | 21 | 0.45 | 4929 | 3950 | H3 | 161.95 | 4.1 | 69 | 1.4 | 138.2 | 3.5 | 26 | 0.53 | 6167 | 4660 | H5 | 243.32 | 5.2 | 111 | 1.8 | 205.0 | 4.4 | 53 | 0.86 | 6828 | 4830 | H6 | 270.48 | 5.6 | 198 | 2.9 | 183.5 | 3.8 | 31 | 0.45 | 7226 | 4650 | H7-T74 | 706.8 | 15.2 | 224 | 3.1 | 674.2 | 14.5 | 57 | 0.79 | 7731 | 6088 | H8-T76 | 273.96 | 4.5 | 201 | 2.6 | 267.8 | 4.4 | 32 | 0.41 | 8100 | 6247 | H10-T78 | 287.362 | 4.6 | 162 | 2.0 | 281.1 | 4.5 | 42 | 0.52 | 8667 | 6406 | H14-T80 | 294.676 | 4.6 | 130 | 1.5 | 288.2 | 4.5 | 57 | 0.66 | 9500 | 6750 | H18-T90 | 405 | 6.0 | 114 | 1.2 | 398.2 | 5.9 | 31 | 0.33 |
|
Statistics of different layers' errors for ISO and VTI velocity
|
[1] |
何治亮, 赵向原, 张文彪, 等. 深层—超深层碳酸盐岩储层精细地质建模技术进展与攻关方向[J]. 石油与天然气地质, 2023, 44(1):16-33.
|
[1] |
He Z L, Zhao X Y, Zhang W B, et al. Progress and direction of geological modeling for deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2023, 44(1):16-33.
|
[2] |
刘军, 黄超, 杨林, 等. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3):747-756.
|
[2] |
Liu J, Huang C, Yang L, et al. Quantitative prediction technology for the hydrocarbon production capacity of fractures and vugs in fault-controlled carbonate reservoirs in the Shunbei area[J]. Geophysical and Geochemical Exploration, 2023, 47(3):747-756.
|
[3] |
漆立新. 塔里木盆地顺北地区海相超深碳酸盐岩油气勘探物探技术需求与创新应用[J]. 石油物探, 2023, 62(3):381-394.
|
[3] |
Qi L X. Technical demand and innovative application of geophysical exploration technology for marine ultra-deep carbonate rocks in Shunbei area,Tarim Basin[J]. Geophysical Prospecting for Petroleum, 2023, 62(3):381-394.
|
[4] |
李宗杰, 刘军, 张永升, 等. 塔里木盆地中石化探区油气勘探进展、难点及技术需求[J]. 石油物探, 2023, 62(4):579-591.
|
[4] |
Li Z J, Liu J, Zhang Y S, et al. Progress, difficulties,and technical requirements of oil and gas exploration of the Sinopec exploration area in the Tarim Basin[J]. Geophysical Prospecting for Petroleum, 2023, 62(4):579-591.
|
[5] |
Deregowski S M. Common-offset migrations and velocity analysis[J]. First Break, 1990, 8(6):83-92.
|
[6] |
杨晓弘, 何继善, 谢冬琪. 速度层析成像正反演技术[J]. 物探与化探, 2009, 33(2):217-219,223.
|
[6] |
Yang X H, He J S, Xie D Q. The forward and inversion technology for velocity tomography[J]. Geophysical and Geochemical Exploration, 2009, 33(2):217-219,223.
|
[7] |
Doherty S M, Claerbout J F. Velocity analysis based on the wave equation[J]. Stanford Exploration Project Report, 1974, 1(1):160-178.
|
[8] |
李振春, 穆志平, 张建磊, 等. 共聚焦点道集偏移速度建模[J]. 物探与化探, 2003, 27(5):403-406,410.
|
[8] |
Li Z C, Mu Z P, Zhang J L, et al. Migration velocity modeling in common focus point gather[J]. Geophysical and Geochemical Exploration, 2003, 27(5):403-406,410.
|
[9] |
Al-Yahya K. Velocity analysis by iterative profile migration[J]. Geophysics, 1989, 54(6):718-729.
|
[10] |
胡英, 张研, 陈立康, 等. 速度建模的影响因素与技术对策[J]. 石油物探, 2006, 45(5):503-507,17.
|
[10] |
Hu Y, Zhang Y, Chen L K, et al. Influencing factors and technical strategies for velocity modeling[J]. Geophysical Prospecting for Petroleum, 2006, 45(5):503-507,17.
|
[11] |
Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
|
[12] |
成琥, 张红军, 于明, 等. 全波形反演配套技术及应用[J]. 石油地球物理勘探, 2023, 58(s1):37-43.
|
[12] |
Cheng H, Zhang H J, Yu M, et al. Applicaction of full waveform inversion and supporint techniques[J]. Oil Geophysical Prospecting, 2023, 58(s1):37-43.
|
[13] |
刘畅, 李振春, 曲英铭, 等. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2):227-234.
|
[13] |
Liu C, Li Z C, Qu Y M, et al. A review of seismic tomography methods[J]. Geophysical and Geochemical Exploration, 2020, 44 (2):227-234.
|
[14] |
郭旭升, 刘金连, 杨江峰, 等. 中国石化地球物理勘探实践与展望[J]. 石油物探, 2022, 61(1):1-14.
|
[14] |
Guo X S, Liu J L, Yang J F, et al. Geophysical exploration practices and perspectives at Sinopec[J]. Geophysical Prospecting for Petroleum, 2022, 61(1):1-14.
|
[15] |
李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, 59(2):283-294.
|
[15] |
Li Z J, Yang Z C, Li H Y, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):283-294.
|
|
|
|