|
|
A fine-scale prediction method for small-scale faults and fractures in shale gas reservoirs |
LYU Qi-Biao1( ), WU Qing-Jie2, LI Shu-Guang1, WANG Ren-Fu1 |
1. Research Institute of Exploration and Development, Southwest Oil & Gas Company, SINOPEC, Chengdu 610041, China 2. Southwest Oil & Gas company, SINOPEC, Chengdu 610041, China |
|
|
Abstract Small- and micro-scale faults fractures (fractures and faults with fault throw less than 10 m) that originally developed in shale strata have a significant impact on the probability of penetration, stimulation volume, and production capacity of high-quality reservoirs in horizontal well sections. Therefore, it is critical to conduct fine-scale fault and fracture prediction. However, any single method struggles to accurately identify and predict these faults and fractures. Based on the developmental conditions of small-and micro-scale faults and fractures in the shale gas reservoirs of the Longmaxi Formation in the southern Sichuan Basin, this study conducted forward modeling, response mechanism analysis, and characterization of fracture responses, developing a prediction method integrating predicting and modeling. Furthermore, this study preferentially investigated techniques including seismic data processing, small-scale fault and fracture prediction, multi-scale fracture modeling, and fusion characterization. The results of the proposed method were highly consistent with the geological anomalies including small and micro-scale faults, lost circulation, and inter-well pressure channeling observed during the drilling of horizontal wells in the shale gas reservoirs of the Longmaxi Formation. Furthermore, these results exhibit a strong positive correlation with the single-well production capacity. All these corroborate that it is feasible to use this method to predict small- and micro-scale faults and fractures. This study can serve as a reference for predicting small-scale faults and fractures in other strata of the same type.
|
Received: 26 June 2024
Published: 22 April 2025
|
|
|
|
|
|
Burial depth of the bottom of Longmaxi Formation in the study area and the results of fault and suite deformation events encountered in the horizontal section
|
|
Microscale fracture occurrence (a) and seismic profile characteristics (b) of Longmaxi Formation
|
|
Seismic response characteristics of small and micro scale fracture models and results of different fracture detection methods
|
|
Geological models and forward migration profiles of fracture zones with different density
|
|
Geological models and forward migration profiles of fracture zones with different dip angles
|
|
High resolution prestack depth migration profile
|
|
Profile of entropy attribute anomaly overlapping casing deformation
|
|
Crack prediction results comparation between FMI and seismic
|
|
DFN fault and fracture model of Longmaxi Formation
|
|
Prediction map of the bottom fault and fracture zone of the Longmaxi Formation
|
井名 | 实钻情况 | 预测结果 | 吻合情况 | 深度/m | 断距/m | 裂缝尺度 | 裂缝走向 | 裂缝与轨迹夹角/(°) | 裂缝平面延伸长度/m | 裂缝分级 | 完全吻合 | 基本吻合(100 m内) | A1 | 5412.00 | 5 | 中、小 | NE | 67 | 606 | Ⅱ | | √ | A2 | 4527.00 | 2 | 大 | EW | 82 | 297 | Ⅱ | √ | | A3 | 5408.00 | 0.5 | 中、小 | NE | 78 | 399 | Ⅲ | √ | | A4 | 5438.00 | 0.5 | 中、小 | NW | 2 | 371 | Ⅲ | √ | | A5 | 4530.00 | 0.5 | 中、小 | SN | 80 | 419 | Ⅲ | | √ | A6 | 4982.00 | 1.5 | 大 | NE | 38 | 432 | Ⅲ | | √ | A7 | 4850.00 | 1 | 大 | NW | 84 | 473 | Ⅲ | | | A8 | 5165.00 | 2.5 | 大、中、小 | NW | 36 | 1043 | Ⅰ | √ | | A9 | 5694.00 | 2.5 | 中、小 | NW | 62 | 456 | Ⅲ | √ | | A10 | 4047.00 | 2 | 大、中、小 | NW | 51 | 2845 | Ⅰ | √ | | A11 | 4575.00 | 1 | 大、中、小 | SN | 3 | 1769 | Ⅰ | | √ | A12 | 4719.00 | 2 | 中、小 | NE | 17 | 669 | Ⅱ | | √ | A13 | 4428.00 | 0.5 | 中、小 | NE | 19 | 443 | Ⅲ | | | A14 | 4509.00 | 1.2 | 中、小 | NE | 47 | 186 | Ⅲ | | √ | A15 | 4134.00 | 2.5 | 中、小 | NW | 52 | 378 | Ⅲ | | √ | A16 | 4756.00 | 2 | 大、中、小 | NW | 62 | 1215 | Ⅰ | | | A17 | 5460.00 | 1 | 大 | SN | 3 | 1418 | Ⅱ | √ | | A18 | 4728.00 | 0.5 | 大 | NE | 10 | 1456 | Ⅱ | | √ | A19 | 5461.00 | 1 | 中、小 | NE | 21 | 292 | Ⅲ | | √ | A20 | 4614.00 | 2 | 大 | NW | 22 | 925 | Ⅱ | | | A21 | 5192.00 | 1 | 大 | NW | 22 | 925 | Ⅱ | √ | | A22 | 5031.00 | 1 | 中、小 | NW | 31 | 534 | Ⅱ | √ | | A23 | 4236.00 | 1 | 中、小 | NW | 15 | 407 | Ⅲ | √ | | A24 | 4036.00 | 1 | 中、小 | NE | 66 | 288 | Ⅲ | √ | | A25 | 4440.00 | 0.8 | 中、小 | NW | 57 | 252 | Ⅲ | | | A26 | 3946.00 | 2 | 中、小 | NE | 59 | 517 | Ⅱ | √ | | A27 | 4277.00 | 1 | 大、中、小 | NW | 8 | 895 | Ⅰ | √ | | A28 | 4387.00 | 1 | 大、中、小 | NW | 8 | 895 | Ⅰ | √ | | A29 | 4760.00 | 1 | 大、中、小 | NW | 8 | 895 | Ⅰ | √ | | A30 | 4294.00 | 1 | 中、小 | NE | 53 | 265 | Ⅲ | √ | | A31 | 4306.00 | 1 | 中、小 | NE | 53 | 265 | Ⅲ | √ | |
|
Prediction results of small and micro scale fractures and drilling occurrences
|
井名 | 实钻情况 | 断缝预测结果 | 吻合情况 | 测深/m | 漏失体积/m3 | 最近预测裂缝尺度 | 裂缝走向 | 裂缝与轨迹夹角/(°) | 平面延伸长度/m | 裂缝分级 | 完全吻合 | 基本吻合(100 m内) | B1 | 3870.00 | 124.63 | 中、小 | NW | | | | √ | | B2 | 4835.00 | 20.98 | 中、小 | SN | 4 | 191 | Ⅲ | | √ | B3 | 5653.00 | 6.5 | 大 | NE | 49 | 806 | Ⅱ | √ | | B4 | 3505.00 | 17 | 中、小 | NW | | | | √ | | B5 | 3577.26 | 319.14 | 中、小 | NW | | | | √ | | B6 | 3793.47 | 141 | 中、小 | NW | | | | √ | | B7 | 3 230.16 | 80.76 | 中、小 | NW | | | | √ | | B8 | 3465.74 | 35.5 | 中、小 | NE | | | | | | B9 | 5434.00 | 9.5 | 中、小 | NW | 62 | 1 346 | Ⅱ | √ | | B10 | 4468.00 | 173.3 | 中、小 | NE | 35 | 76 | Ⅲ | | √ | B11 | 4273.00 | 8 | 中、小 | NW | 34 | 453 | Ⅲ | | | B12 | 3906.61 | 183.76 | 中、小 | NW | | | | | √ | B13 | 3804.00 | 72.4 | 中、小 | NE | | | | √ | | B14 | 4267.00 | 4.37 | 中、小 | NW | 40 | 118 | Ⅲ | | √ | B15 | 3585.00 | 10.8 | 中、小 | NW | | | | | √ | B16 | 4989.00 | 3.7 | 中、小 | NW | 20 | 256 | Ⅲ | | |
|
Statistics of formation leakage and fracture prediction
|
|
Relationship between fracture density and first year cumulative gas production
|
[1] |
Boersma T, Johnson C. The shale gas revolution:U.S.and EU policy and research agendas[J]. Review of Policy Research, 2012, 29(4):570-576.
|
[2] |
Gale J F W, Reed R M, Holder J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4):603-622.
|
[3] |
Edwards K L, Weissert S, Jackson J, et al. Marcellus shale hydraulic fracturing and optimal well spacing to maximize recovery and control costs[C]// SPE,January 24-26,2011.TheWoodlands,Texas,USA.SPE, 2011:140463.
|
[4] |
Zeng L B, Lyu W Y, Li J, et al. Natural fractures and their influence on shale gas enrichment in Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering, 2016, 30:1-9.
|
[5] |
汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019, 40(1):41-49.
|
[5] |
Wang H, He Z L, Zhang Y G, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil & Gas Geology, 2019, 40(1):41-49.
|
[6] |
曲冠政, 周德胜, 彭娇, 等. 基于Lattice Boltzmann方法的页岩张性裂缝渗流特征研究[J]. 特种油气藏, 2018, 25(1):134-139.
|
[6] |
Qu G Z, Zhou D S, Peng J, et al. Seepage characteristics of tension fractures in shale based on lattice Boltzmann method[J]. Special Oil & Gas Reservoirs, 2018, 25(1):134-139.
|
[7] |
郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7):1209-1218.
|
[7] |
Guo X S. Rules of two-factor enrichiment for marine shale gas in Southern China:Understanding from the longmaxi formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7):1209-1218.
|
[8] |
王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6.
|
[8] |
Wang Z G. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6.
|
[9] |
王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报:自然科学版, 2014, 50(3):476-486.
|
[9] |
Wang S F, Zou C N, Dong D Z, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):476-486.
|
[10] |
印兴耀, 马正乾, 向伟, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ)——裂缝储层岩石物理理论[J]. 石油物探, 2022, 61(2):183-204.
|
[10] |
Yin X Y, Ma Z Q, Xiang W, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅰ):Effective anisotropic seismic rock physics theory[J]. Geophysical Prospecting for Petroleum, 2022, 61(2):183-204.
|
[11] |
印兴耀, 马正乾, 宗兆云, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ)——五维地震裂缝预测技术[J]. 石油物探, 2022, 61(3):373-391.
|
[11] |
Yin X Y, Ma Z Q, Zong Z Y, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ):Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum, 2022, 61(3):373-391.
|
[12] |
王飞, 程礼军, 刘俊峰, 等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探, 2015, 43(5):113-116.
|
[12] |
Wang F, Cheng L J, Liu J F, et al. Research and application of post-stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration, 2015, 43(5):113-116.
|
[13] |
欧阳明华, 史建南, 胡天文, 等. 四川盆地威远地区页岩气储层多尺度裂缝预测[J]. 成都理工大学学报:自然科学版, 2020, 47(1):75-84.
|
[13] |
Ouyang M H, Shi J N, Hu T W, et al. 3D frequency-division fracture prediction in shale gas reservoir in Weiyuan area,Sichuan Basin,China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2020, 47(1):75-84.
|
[14] |
朱志勇. 叠前纵波裂缝预测在平桥页岩气储层中的应用[J]. 江汉石油职工大学学报, 2018, 31(2):10-13.
|
[14] |
Zhu Z Y. Application of prestack longitudinal wave fracture prediction in Pingqiao shale gas reservoir[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2018, 31(2):10-13.
|
[15] |
陈超, 印兴耀, 刘晓晶, 等. 基于方位各向异性的裂缝密度反演方法及应用[J]. 地球物理学报, 2022, 65(1):371-383.
|
[15] |
Chen C, Yin X Y, Liu X J, et al. Fracture density inversion based on azimuthal anisotropy and its application[J]. Chinese Journal of Geophysics, 2022, 65(1):371-383.
|
[16] |
王彬, 王军, 谭亦然, 等. 基于DFN的页岩气储层裂缝建模研究[J]. 石油化工应用, 2015, 34(12):62-65,73.
|
[16] |
Wang B, Wang J, Tan Y R, et al. Shale gas reservoir fracture modeling research base on discrete fracture network model[J]. Petrochemical Industry Application, 2015, 34(12):62-65,73.
|
[17] |
Zazoun R S. Fracture density estimation from core and conventional well logs data using artificial neural networks:The cambro-Ordovician reservoir of mesdar oil field,Algeria[J]. Journal of African Earth Sciences, 2013, 83:55-73.
|
[18] |
黄浩勇, 苟其勇, 刘胜军, 等. 页岩气叠后裂缝综合预测技术——以长宁国家级页岩气示范区为例[J]. 断块油气田, 2022, 29(2):218-223.
|
[18] |
Huang H Y, Gou Q Y, Liu S J, et al. Post-stack fracture comprehensive prediction technology for shale gas:Taking Changning national shale gas demonstration area as an example[J]. Fault-Block Oil & Gas Field, 2022, 29(2):218-223.
|
[19] |
Chen S Q, Zeng L B, Huang P, et al. The application study on the multi-scales integrated prediction method to fractured reservoir description[J]. Applied Geophysics, 2016, 13(1):80-92.
|
[1] |
ZHANG Chang-Jiang, HE Jian-Feng, NIE Feng-Jun, XIA Fei, LI Wei-Dong, WANG Xue-Yuan, ZHANG Xin, ZHONG Guo-Yun. Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 259-269. |
[2] |
ZHANG Zheng-Yu-Cheng, SU Jian-Long. Petrophysical modeling of tight sandstones of the Lianggaoshan Formation,Southeast Sichuan[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 288-298. |
|
|
|
|