|
|
Pre-stack inversion for prediction of the Paleogene reservoirs in the Panyu 4 Sag |
ZHANG Zhen-Bo, LIU Ling, LIU Dao-Li, YANG Deng-Feng |
Shenzhen Branch of CNOOC, Shenzhen 518054, China |
|
|
Abstract To improve the inversion accuracy of reservoirs in the Paleogene strata with limited wells and sedimentary and structural complexity, two key technologies were used in seismic data processing: sparse pulse inversion for primary wave estimation and anisotropic Q-pre-stack depth migration (PSDM). This contributed to improved quality of seismic gathers and imaging. Then, the pre-stack simultaneous inversion method was applied as follows: (1) Stacking velocity and layer-constrained Dix inversion were employed to obtain a low-frequency model of P-wave impedance; (2) Elastic impedance inversion was performed using angle-stacked data and well-calibrated wavelets, yielding far, medium, and near elastic impedance; (3) Initial P- and S-wave impedance, as well as initial density, were obtained through Fatti inversion; (4) Pre-stack simultaneous inversion was performed to obtain the final P- and S-wave impedance and density; (5) Lithology and physical property inversion results were used to predict the reservoir distribution range. This method, driven by three-dimensional seismic data and exhibiting low dependence on logs, can serve as a reference for reservoir prediction under similar geological settings.
|
Received: 26 June 2024
Published: 22 April 2025
|
|
|
|
|
|
A P-wave impedance model based on geological framework interpolation for P6 well
|
|
Flowchart of pre-stack simultaneous Inversion
|
|
Artificial intelligence reservoir quantitative prediction technology under rockphysical constraints
|
|
Layer constrained Dix inversion results through P6 well
|
|
Inversion profile of elastic impedance from different angles through P6 well
|
|
Initial inversion profile through P6 well
|
|
Final inversion profile through P6 well
|
|
Comparison of P-wave impedance inversion results obtained by different methods
|
|
Plot of density and P-wave impedance in Panyu area
|
|
Comparison between pre-stack inversion results and logging curves
|
|
Total reservoir thickness map of Wenchang Formation
|
|
Inversion results of stratigraphic lithology and physical properties
|
|
Total thickness map and porosity inversion profile of high-quality reservoir in Wenchang Formation
|
[1] |
张丽, 吴静, 蔡国富, 等. 珠江口盆地番禺4洼文昌组储层特征及主控因素[J]. 矿物岩石, 2022, 42(4):116-127.
|
[1] |
Zhang L, Wu J, Cai G F, et al. Reservoir characteristics and main controlling factors of Wenchang formation in Panyu-4 depression,Pearl River Mouth Basin[J]. Mineralogy and Petrology, 2022, 42(4):116-127.
|
[2] |
姜岩, 徐立恒, 张秀丽, 等. 叠前地质统计学反演方法在长垣油田储层预测中的应用[J]. 地球物理学进展, 2013, 28(5):2579-2586.
|
[2] |
Jiang Y, Xu L H, Zhang X L, et al. Prestack geostatistical inversion method and its application on the reservoir prediction of Changyuan oil field[J]. Progress in Geophysics, 2013, 28(5):2579-2586.
|
[3] |
杨海长, 李智, 徐建永, 等. 叠前反演在LHK地区烃类检测中的应用[J]. 物探与化探, 2011, 35(5):666-670,688.
|
[3] |
Yang H Z, Li Z, Xu J Y, et al. The application of pre-stack seismic inversion to hydrocarbon detection in the complex oil and gas field[J]. Geophysical and Geochemical Exploration, 2011, 35(5):666-670,688.
|
[4] |
张卫卫, 刘军, 刘力辉, 等. 珠江口盆地番禺4洼古近系文昌组岩性预测技术及应用[J]. 岩性油气藏, 2022, 34(6):118-125.
|
[4] |
Zhang W W, Liu J, Liu L H, et al. Lithology prediction technology and its application of Paleogene Wenchang Formation in Panyu-4 depression,Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2022, 34(6):118-125.
|
[5] |
罗明, 刘汉卿, 宗兆云, 等. 东沙隆起区灰岩强振幅影响下储层识别与流体检测研究及应用[J]. 物探化探计算技术, 2023, 45(3):335-343.
|
[5] |
Luo M, Liu H Q, Zong Z Y, et al. Research and application of reservoir identification and oil-gas prediction under the influence of the strong amplitude of limestone in the Dongsha uplift area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(3):335-343.
|
[6] |
苑书金. 叠前地震反演技术的进展及其在岩性油气藏勘探中的应用[J]. 地球物理学进展, 2007, 22(3):879-886.
|
[6] |
Yuan S J. Progress of pre-stack inversion and application in exploration of the lithological reservoirs[J]. Progress in Geophysics, 2007, 22(3):879-886.
|
[7] |
姜勇, 俞伟哲, 刘庆文, 等. 基于目标最优双向建模的柯西约束反演方法研究及应用[J]. 石油物探, 2023, 62(1):142-153.
|
[7] |
Jiang Y, Yu W Z, Liu Q W, et al. Research on and application of Cauchy constrained inversion method based on objective-optimal bidirectional modeling[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):142-153.
|
[8] |
Zhang Z B, Xuan Y H, Deng Y. Simultaneous prestack inversion of variable-depth streamer seismic data[J]. Applied Geophysics, 2019, 16(1):92-100.
|
[9] |
陈兆明, 李志晔, 张卫卫, 等. 深度学习算法在白云凹陷深水区密度反演中的应用[J]. 中国海上油气, 2022, 34(3):55-61.
|
[9] |
Chen Z M, Li Z Y, Zhang W W, et al. Application of depth learning algorithm to density inversion in deepwater area of Baiyun Sag[J]. China Offshore Oil and Gas, 2022, 34(3):55-61.
|
[10] |
Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994, 59(9):1362-1376.
|
[11] |
徐长贵, 赖维成. 渤海古近系中深层储层预测技术及其应用[J]. 中国海上油气, 2005, 17(4):231-236.
|
[11] |
Xu C G, Lai W C. Predication technologies of Paleogene mid-deep reservoir and their application in Bohai Sea[J]. China Offshore Oil and Gas, 2005, 17(4):231-236.
|
[12] |
黄江波, 左中航, 侯栋甲, 等. 叠前密度反演技术在沙南凹陷中深层储层预测中的应用[J]. 海洋地质前沿, 2021, 37(2):46-53.
|
[12] |
Huang J B, Zuo Z H, Hou D J, et al. Application of pre-stack density inversion technology to middle-deep reservoir prediction in Shanan depression[J]. Marine Geology Frontiers, 2021, 37(2):46-53.
|
[13] |
陈人杰, 徐乐意, 刘灵, 等. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6):1595-1601.
|
[13] |
Chen R J, Xu L Y, Liu L, et al. A low frequency model construction method for continental strata inversion based on co-Kriging technique[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1595-1601.
|
[14] |
张霖斌, 姚振兴. 层状介质的声波波动方程反演[J]. 地球物理学进展, 2000, 15(2):22-29.
|
[14] |
Zhang L B, Yao Z X. Wavform inversion of acoustic data in layered media[J]. Progress in Geophysics, 2000, 15(2):22-29.
|
[15] |
Connolly P. Elastic impedance[J]. The Leading Edge, 1999, 18(4):438-452.
|
[16] |
杨辉, 戴世坤, 宋海斌, 等. 综合地球物理联合反演综述[J]. 地球物理学进展, 2002, 17(2):262-271.
|
[16] |
Yang H, Dai S K, Song H B, et al. Overview of joint inversion of integrated geophysics[J]. Progress in Geophysics, 2002, 17(2):262-271.
|
[17] |
甘利灯, 王峣钧, 罗贤哲, 等. 基于孔隙结构参数的相控渗透率地震预测方法[J]. 石油勘探与开发, 2019, 46(5):883-890.
|
[17] |
Gan L D, Wang Y J, Luo X Z, et al. A permeability prediction method based on pore structure and lithofacies[J]. Petroleum Exploration and Development, 2019, 46(5):883-890.
|
[18] |
胡华锋, 印兴耀, 吴国忱. 基于贝叶斯分类的储层物性参数联合反演方法[J]. 石油物探, 2012, 51(3):225-232.
|
[18] |
Hu H F, Yin X Y, Wu G C. Joint inversion of petrophysical parameters based on Bayesian chassification[J]. Geophysical Prospecting for Petroleum, 2012, 51(3):225-232.
|
[19] |
Saltzer R, Finn C, BurtzOlivier M. Predicting Vshale and porosity using cascaded seismic and rock physics inversion[J]. Geophy-sics, 2019, 24:732-736.
|
[20] |
邓继新, 王尚旭. 基于统计岩石物理的含气储层饱和度与孔隙度联合反演[J]. 石油天然气学报, 2009, 31(1):48-52,391.
|
[20] |
Deng J X, Wang S X. Joint inversion of saturation and porosity in gas reservoirs based on statistical rock physics[J]. Journal of Oil and Gas Technology, 2009, 31(1):48-52,391.
|
[21] |
刘灵, 张卫卫, 朱焱辉, 等. 基于岩石物理模型的凝灰质砂岩的识别与刻画——以珠江口盆地惠州凹陷古近系砂岩储层为例[J]. 石油物探, 2024, 63(2):336-345.
|
[21] |
Liu L, Zhang W W, Zhu Y H, et al. Identification and characterization of tuffaceous sandstone based on petrophysical model:A case study of Paleogene sandstone reservoir in Huizhou Sag of the Pearl River Mouth Basin[J]. Geophysical Prospecting for Petroleum, 2024, 63(2):336-345.
|
[22] |
丁在宇, 杨勇, 王一鸣, 等. 浅海拖缆地震数据处理中关键技术的应用与效果[J]. 石油地球物理勘探, 2017, 52(S2):56-63,3.
|
[22] |
Ding Z Y, Yang Y, Wang Y M, et al. Application and effect of key technologies in seismic data processing of shallow water streamers[J]. Oil Geophysical Prospecting, 2017, 52(S2):56-63,3.
|
[23] |
杨鹏程, 李斌, 邵文潮, 等. 海域天然气水合物三维地震处理关键技术应用[J]. 海洋石油, 2021, 41(3):1-7.
|
[23] |
Yang P C, Li B, Shao W C, et al. The key techniques of 3D seismic data processing for gas hydrate[J]. Offshore Oil, 2021, 41(3):1-7.
|
[24] |
薛志刚, 轩义华, 刘铮, 等. 气云区全波形反演约束Q场建模技术[J]. 吉林大学学报:地球科学版, 2022, 52(2):613-623.
|
[24] |
Xue Z G, Xuan Y H, Liu Z, et al. FWI guided Q modeling technology in gas clouds area[J]. Journal of Jilin University:Earth Science Edition, 2022, 52(2):613-623.
|
[1] |
MI Xin-Wu, ZHOU Cheng-Gang, TIAN Jun, HAN Yao-Zu, LI Ya-Nan, XIAO Bing-Qing. Prediction of heterogeneous,thin Triassic sandstone reservoirs in the Lunnan area,Tarim Basin[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 321-329. |
[2] |
ZHANG Yong-Sheng, ZHANG Rong, FAN Yi, ZHANG An-Jia, LI Ying-Cai. Wavefield decomposition based on sparse-constrained parabolic Radon transform in the frequency domain[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1653-1663. |
|
|
|
|