|
|
Sources of soil heavy metals and health risk assessment of crops in arable land at the periphery of a typical mercury mining area |
YU Fei1,2( ), WANG Rui1,2, ZHOU Jiao1,2, ZHANG Feng-Lei1,2, JIANG Yu-Lian1,2, ZHANG Yun-Yi1,2, ZHU Shi-Lin1,2 |
1. Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China 2. Chongqing Key Laboratory of Land Quality Geological Survey, Chongqing 400038, China |
|
|
Abstract This study aims to systematically assess the pollution risk of heavy metals in the soil-crop-human body system along the periphery of mining areas, thus providing a scientific basis for the classified management of ecological risks and safe crop production in mining areas. Hence, this study examined the soil and crops (rice, corn, and sweet potato) in arable land along the periphery of a typical mercury mining area in Chongqing City. The single-factor pollution index (Pi), Nemero composite index (P综), and positive matrix factorization (PMF) model were employed to assess the pollution degree and ecological risk of soil heavy metals for source analysis. Moreover, the human health risk assessment model recommended by the United States Environmental Protection Agency (USEPA) was applied to assess the health risks of local staple crops for residents. The results are as follows: (1) The average contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the soil of the study area were all higher than the topsoil background values of Chongqing and China, suggesting that heavy metals are relatively enriched in topsoil; (2) The single-factor pollution index indicates that the over-limit ratios of Hg and Cd in the soil reached 96.29% and 92.59%, respectively, whereas rice, corn, and sweet potato samples with Cd content exceeding the value specified in the national food safety standard (GB 2762—2022) accounted for 16.67%, 18.75%, and 14.28%, respectively; (3) The Nemero composite index (P综) was between 1.17 and 46.05, suggesting mild to heavy pollution in the study area, with heavy pollution primarily located around the mercury mining area and artisanal mercury smelters, as well as the lower reaches of the Rongxi River; (4) The PMF model analysis demonstrates that the heavy metals in the soil of the study area originate from three sources: natural source (47.21%), mining activities (16.00%), and a mixed source of mining and agricultural activities (36.79%). Specifically, Cd, Cr, and Ni are principally affected by the natural source, Hg by mining activities, As and Pb by the mixed source of mining and agricultural activities, and Cu and Zn are associated with the natural source and the mixed source of mining and agricultural activities; (5) The human health risk model reveals that the consumption of rice, corn, and sweet potato poses composite health risks for both adults and children. Rice consumption exhibits the highest risk index, especially in children, with the main risk factors being As and Cd.
|
Received: 12 July 2023
Published: 27 June 2024
|
|
|
|
|
|
Location of sampling sites in the study area
|
土壤 | 农作物 | 指标 | 测定方法 | 检出限/10-6 | | 测定方法 | 检出限/10-6 | As | X-射线荧光光谱法(XRF) | 0.9 | | 等离子体质谱法(ICP-MS) | 0.003 | Cd | 等离子体质谱法(ICP-MS) | 0.02 | | 等离子体质谱法(ICP-MS) | 0.01 | Cr | X-射线荧光光谱法(XRF) | 2.8 | | 等离子体质谱法(ICP-MS) | 0.01 | Cu | X-射线荧光光谱法(XRF) | 0.8 | | 等离子体质谱法(ICP-MS) | 0.04 | Hg | 原子荧光光谱法(AFS) | 0.0005 | | 原子荧光光谱法(AFS) | 0.0005 | Ni | X-射线荧光光谱法(XRF) | 1.2 | | 等离子体质谱法(ICP-MS) | 0.018 | Pb | X-射线荧光光谱法(XRF) | 1.7 | | 等离子体质谱法(ICP-MS) | 0.01 | Zn | X-射线荧光光谱法(XRF) | 0.6 | | 等离子体质谱法(ICP-MS) | 0.05 | pH | 玻璃电极法 | 0.01 | | | |
|
Element analysis methods and detection limit
|
等级 | 单因子污染指数 | 内梅罗综合指数 | 污染等级 | 1级 | Pi≤0.7 | P综≤0.7 | 清洁 | 2级 | 0.7<Pi≤1.0 | 0.7<P综≤1.0 | 尚清洁 | 3级 | 1.0<Pi≤2.0 | 1.0<P综≤2.0 | 轻度污染 | 4级 | 2.0<Pi≤3.0 | 2.0<P综≤3.0 | 中度污染 | 5级 | Pi>3.0 | P综>3.0 | 重度污染 |
|
Nemero index soil pollution evaluation level
|
评价参数 | 参考值 | 数据来源 | EF | 365 d·a-1 | [29] | ED | 成人30 d·a-1;儿童10 d·a-1 | [30] | BW | 成人70 kg;儿童16 kg | [29] | AT | ED×365 | [29] | IR | 水稻、玉米和红薯:成人0.300、0.045和 0.069 kg·d-1;儿童0.176、0.033和0.046 kg·d-1 | [4] | RfD | As、Cd、Cr、Cu、Hg、Ni、Pb和Zn取值分别为 0.0003、0.001、1.5、0.04、0.0003、 0.02、0.004和0.3 mg·(kg·d)-1 | [31] |
|
The parameters of health risk assessment model
|
特征参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | pH | 最小值/10-6 | 4.24 | 0.28 | 67.20 | 20.97 | 0.15 | 29.97 | 29.20 | 78.97 | 4.33 | 最大值/10-6 | 50.15 | 4.67 | 109.00 | 96.85 | 38.73 | 70.85 | 75.30 | 219.98 | 8.22 | 平均值/10-6 | 17.92 | 1.12 | 88.86 | 45.13 | 3.31 | 43.52 | 45.39 | 127.07 | 6.10 | 中值/10-6 | 16.15 | 0.92 | 89.65 | 42.08 | 0.78 | 41.14 | 43.40 | 125.70 | 6.08 | 变异系数 | 0.58 | 0.71 | 0.12 | 0.36 | 2.00 | 0.23 | 0.21 | 0.22 | 0.16 | 重庆市土壤背景值[32]/10-6 全国土壤背景值[33]/10-6 | 6.62 11.20 | 0.28 0.10 | 74.4 61.00 | 24.6 22.60 | 0.069 0.07 | 31.6 26.90 | 28.1 26.00 | 81.9 74.20 | 6.70 |
|
Concentrations of heavy metals in the farmland soils in the study area
|
|
Evaluation results of single factor index method
|
|
|
|
Factor profiles and contributions of heavy metal pollution sources in the study area
|
参数 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 水稻 | 最小值/10-6 | 0.07 | 0.00 | 0.06 | 0.73 | 0.00 | 0.16 | 0.05 | 15.50 | 最大值/10-6 | 0.42 | 1.20 | 0.23 | 3.20 | 0.01 | 0.58 | 0.05 | 25.00 | 平均值/10-6 | 0.24 | 0.19 | 0.10 | 1.95 | 0.01 | 0.29 | 0.05 | 19.60 | 超标率/% | 0.00 | 16.67 | 0.00 | - | 0.00 | - | 0.00 | - | 富集因子 | 0.019 | 0.187 | 0.001 | 0.050 | 0.007 | 0.007 | 0.001 | 0.168 | 玉米 | 最小值/10-6 | 0.01 | 0.01 | 0.06 | 1.30 | 0.00 | 0.14 | ND | 16.00 | 最大值/10-6 | 0.01 | 0.14 | 0.10 | 2.80 | 0.00 | 0.70 | ND | 25.10 | 平均值/10-6 | 0.01 | 0.05 | 0.08 | 1.93 | 0.00 | 0.36 | ND | 18.32 | 超标率/% | 0.00 | 18.75 | 0.00 | - | 0.00 | - | 0.00 | - | 富集因子 | 0.001 | 0.070 | 0.001 | 0.044 | 0.010 | 0.008 | ND | 0.144 | 红薯 | 最小值/10-6 | 0.01 | 0.01 | 0.04 | 1.60 | 0.00 | 0.16 | 0.02 | 2.00 | 最大值/10-6 | 0.02 | 0.19 | 0.06 | 2.40 | 0.00 | 0.69 | 0.05 | 3.80 | 平均值/10-6 | 0.02 | 0.06 | 0.05 | 2.06 | 0.00 | 0.34 | 0.04 | 3.09 | 超标率/% | 0.00 | 28.57 | 0.00 | - | 0.00 | - | 0.00 | - | 富集因子 | 0.001 | 0.038 | 0.001 | 0.053 | 0.004 | 0.006 | 0.001 | 0.025 |
|
Concentrations of heavy metals in the farmland soils in the study area
|
重金属 | CDI | HQ | 成人 | 儿童 | 成人 | 儿童 | 水稻 | 玉米 | 红薯 | 水稻 | 玉米 | 红薯 | 水稻 | 玉米 | 红薯 | 水稻 | 玉米 | 红薯 | As | 0.0010 | 0.0000 | 0.0001 | 0.0026 | 0.0001 | 0.0001 | 3.381 | 0.098 | 0.184 | 8.678 | 0.252 | 0.471 | Cd | 0.0008 | 0.0002 | 0.0002 | 0.0021 | 0.0006 | 0.0005 | 0.834 | 0.230 | 0.199 | 2.140 | 0.591 | 0.511 | Cr | 0.0004 | 0.0003 | 0.0002 | 0.0011 | 0.0008 | 0.0006 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | Cu | 0.0084 | 0.0083 | 0.0088 | 0.0214 | 0.0212 | 0.0226 | 0.209 | 0.207 | 0.220 | 0.536 | 0.531 | 0.566 | Hg | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.080 | 0.052 | 0.027 | 0.206 | 0.133 | 0.070 | Ni | 0.0012 | 0.0015 | 0.0015 | 0.0032 | 0.0040 | 0.0037 | 0.062 | 0.077 | 0.073 | 0.158 | 0.198 | 0.187 | Pb | 0.0002 | - | 0.0002 | 0.0006 | - | 0.0004 | 0.054 | - | 0.039 | 0.138 | - | 0.099 | Zn | 0.0840 | 0.0785 | 0.0132 | 0.2156 | 0.2015 | 0.0339 | 0.280 | 0.262 | 0.044 | 0.719 | 0.672 | 0.113 | THQ | | | | | | | 4.899 | 0.926 | 0.786 | 12.575 | 2.376 | 2.018 |
|
Intake and health risk of heavy metals by crops
|
[1] |
Xiao R, Wang S, Li R H, et al. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan,Shaanxi,China[J]. Ecotoxicology and Environmental Safety, 2017,141:17-24.
|
[2] |
陈盟, 潘泳兴, 黄奕翔, 等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学, 2022, 43(10):4545-4555.
|
[2] |
Chen M, Pan Y X, Huang Y X, et al. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area,Yangshuo[J]. Environmental Science, 2022, 43(10):4545-4555.
|
[3] |
周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6):2884-2892.
|
[3] |
Zhou Y, Chen Q, Deng S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China[J]. Environmental Science, 2018, 39(6):2884-2892.
|
[4] |
余飞, 张永文, 严明书, 等. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2022, 41(2):536-548.
|
[4] |
Yu F, Zhang Y W, Yan M S, et al. Heavy metal pollution and human health risks assessment of soil and crops near the mercury ore in Chongqing[J]. Environmental Chemistry, 2022, 41(2):536-548.
|
[5] |
贾亚琪, 刘文政, 秦俊虎, 等. 汞矿区土壤和农产品重金属污染状况及风险评估[J]. 有色金属:冶炼部分, 2021(3):43-50.
|
[5] |
Jia Y Q, Liu W Z, Qin J H, et al. Pollution and risk assessment of heavy metals in soil and agricultural products around mercury mining areas[J]. Nonferrous Metals:Extractive Metallurgy, 2021(3):43-50.
|
[6] |
陈航, 王颖, 王澍. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 2022, 43(5):2719-2731.
|
[6] |
Chen H, Wang Y, Wang S. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 2022, 43(5):2719-2731.
|
[7] |
湛天丽, 黄阳, 滕应, 等. 贵州万山汞矿区某农田土壤重金属污染特征及来源解析[J]. 土壤通报, 2017, 48(2):474-480.
|
[7] |
Zhan T L, Huang Y, Teng Y, et al. Pollution characteristics and sources of heavy metals in farmland soil in Wanshan mining areas,Guizhou Province[J]. Chinese Journal of Soil Science, 2017, 48(2):474-480.
|
[8] |
倪莘然, 龙明睿, 杨瑞东, 等. 贵州丹寨排庭汞矿区土壤—玉米重金属含量及生态影响[J]. 生态毒理学报, 2020, 15(6):324-333.
|
[8] |
Ni X R, Long M R, Yang R D, et al. Heavy metal contents of soil-maizes and its ecological effects in mercury mining area of Danzhai paiting,Guizhou[J]. Asian Journal of Ecotoxicology, 2020, 15(6):324-333.
|
[9] |
李永华, 孙宏飞, 杨林生, 等. 湖南凤凰茶田汞矿区土壤—水稻系统中汞的传输及其健康风险[J]. 地理研究, 2012, 31(1):63-70.
|
[9] |
Li Y H, Sun H F, Yang L S, et al. Mercury transport in soil-rice system and its health risk in Fenghuang tea field mercury mining area,Hunan Province[J]. Geographical Research, 2012, 31(1):63-70.
|
[10] |
Zhang L, Jin Y Q, Lu J L, et al. Concentration,distribution and bioaccumulation of mercury in the Xunyang mercury mining area,Shaanxi Province,China[J]. Applied Geochemistry, 2009, 24(5):950-956.
|
[11] |
Zhang H, Feng X B, Larssen T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain[J]. Environmental Science & Technology, 2010, 44(12):4499-4504.
|
[12] |
Zhao L, Qiu G L, Anderson C W N, et al. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area,Guizhou Province,Southwest China[J]. Environmental Pollution, 2016,215:1-9.
|
[13] |
林勇征. 贵州万山汞矿区地球化学特征及环境质量评价[D]. 成都: 成都理工大学, 2017.
|
[13] |
Lin Y Z. The geochemical characteristics and environmentalevaluation of quality in mercury mine area of Guizhou wanshan[D]. Chengdu: Chengdu University of Technology, 2017.
|
[14] |
王锐, 邓海, 贾中民, 等. 汞矿区周边土壤重金属空间分布特征、污染与生态风险评价[J]. 环境科学, 2021, 42(6):3018-3027.
|
[14] |
Wang R, Deng H, Jia Z M, et al. Spatial distribution characteristics,pollution,and ecological risk assessment of soil heavy metals around mercury mining areas[J]. Environmental Science, 2021, 42(6):3018-3027.
|
[15] |
李柳. 溪口汞矿地区汞环境污染现状及风险评价研究[D]. 重庆: 重庆大学, 2014.
|
[15] |
Li L. Study on environmental pollution status and risk assessment of mercury in Xikou mercury mining area[D]. Chongqing: Chongqing University, 2014.
|
[16] |
Xu X H, Lin Y, Meng B, et al. The impact of an abandoned mercury mine on the environment in the Xiushan region,Chongqing,southwestern China[J]. Applied Geochemistry, 2018,88:267-275.
|
[17] |
夏勇. 羊石坑汞矿床包裹体地球化学特征研究[J]. 矿产与地质, 1992, 6(4):313-317.
|
[17] |
Xia Y. The geochemical characteristcs of fluid inclusions from the Yangshikeng mercury deposit,Sichuan,China[J]. Mineral Resources and Geology, 1992, 6(4):313-317.
|
[18] |
中华人民共和国国土资源部. DZ/T 0295—2016 土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
|
[18] |
Ministry of Land and Resources of the People's Republic of China. DZ/T 0295—2016 Standard for geochemical evaluation of land quality [S]. Beijing: Geological Publishing House, 2016.
|
[19] |
中国地质调查局.DD 2005-03生态地球化学评价样品分析技术要求(试行)[S]. 2005.
|
[19] |
China Geological Survey. DD2005-03 Technical requirements for sample analysis for ecogeochemical evaluation (Trial)[S]. 2005.
|
[20] |
王锐, 邓海, 贾中民, 等. 地质高背景区土壤及玉米中重金属的含量及污染评价——以城口县为例[J]. 生态环境学报, 2021, 30(4):841-848.
|
[20] |
Wang R, Deng H, Jia Z M, et al. Concentration and pollution evaluation of heavy metals in soil and corn in high geological background area:Taking Chengkou County as an example[J]. Ecology and Environmental Sciences, 2021, 30(4):841-848.
|
[21] |
生态环境部国家市场监督管理总局.GB 15618—2018 土壤环境质量农用地土壤污染风险管控标准(试行) [S]. 北京: 中国环境科学出版社, 2018.
|
[21] |
State Administration for Market Supervision and Administration, Ministry of Ecology and Environment.GB 15618—2018 Soil environmental quality standard for soil pollution risk control of agricultural land (Trial) [S]. Beijing: China Environmental Science Press, 2018.
|
[22] |
杨安, 王艺涵, 胡健, 等. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 2020, 41(2):886-894.
|
[22] |
Yang A, Wang Y H, Hu J, et al. Evaluation and source of heavy metal pollution in surface soil of Qinghai-Tibet Plateau[J]. Environmental Science, 2020, 41(2):886-894.
|
[23] |
Paatero P, Tapper U. Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2):111-126.
|
[24] |
张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
|
[24] |
Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals,southwestern,China[J]. Environmental Science, 2020, 41(9):4197-4209.
|
[25] |
夏子书, 白一茹, 王幼奇, 等. 基于PMF模型的宁南山区小流域土壤重金属空间分布及来源解析[J]. 环境科学, 2022, 43(1):432-441.
|
[25] |
Xia Z S, Bai Y R, Wang Y Q, et al. Spatial distribution and source analysis of soil heavy metals in a small watershed in the mountainous area of southern Ningxia based on PMF model[J]. Environmental Science, 2022, 43(1):432-441.
|
[26] |
尹芳, 封凯, 尹翠景, 等. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 2021, 41(11):5217-5226.
|
[26] |
Yin F, Feng K, Yin C J, et al. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai Province[J]. China Environmental Science, 2021, 41(11):5217-5226.
|
[27] |
柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9):3919-3929.
|
[27] |
Chai L, Wang X, Ma L, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models[J]. China Environmental Science, 2020, 40(9):3919-3929.
|
[28] |
USEPA. Exposure factors handbook[R]. Washington: National Center for Environmental Assessment, 2011.
|
[29] |
USEPA. Highlights of the child-specific exposure factors handbook(Final Report)[R]. Washington,DC:U.S.Environmental Protection Agency, 2009.
|
[30] |
USEPA. Regional screening level (RSL) for chemical contaminants at superfund sites[R]. Washington,DC:U.S.Environmental Protection Agency, 2013.
|
[31] |
谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤—农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3):544-554.
|
[31] |
Xie T H, Guo J X, Chen Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province,China[J]. Journal of Agro-Environment Science, 2019, 38(3):544-554.
|
[32] |
鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6):1625-1636.
|
[32] |
Bao L R, Deng H, Jia Z M, et al. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan,Chongqing[J]. Geology in China, 2020, 47(6):1625-1636.
|
[33] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990.
|
[33] |
China Environmental Monitoring Station. Background values of soil elements in China[M]. Beijing: China Environmental Science Press,1990.
|
[34] |
蒋玉莲, 余京, 王锐, 等. 渝东南典型地质高背景区土壤重金属来源解析及污染评价[J]. 环境科学, 2023, 44(7):4017-4026.
|
[34] |
Jiang Y L, Yu J, Wang R, et al. Source analysis and pollution assessment of soil heavy metals in typical geological high background area in southeastern Chongqing[J]. Environmental Science, 2023, 44(7):4017-4026.
|
[35] |
王锐, 邓海, 严明书, 等. 重庆市酉阳县南部农田土壤重金属污染评估及来源解析[J]. 环境科学, 2020, 41(10):4749-4756.
|
[35] |
Wang R, Deng H, Yan M S, et al. Assessment and source analysis of heavy metal pollution in farmland soils in southern Youyang County,Chongqing[J]. Environmental Science, 2020, 41(10):4749-4756.
|
[36] |
霍明珠, 高秉博, 乔冬云, 等. 基于APCS—MLR受体模型的农田土壤重金属源解析[J]. 农业环境科学学报, 2021, 40(5):978-986.
|
[36] |
Huo M Z, Gao B B, Qiao D Y, et al. Source apportionment of heavy metals in farmland soil based on the APCS-MLR model[J]. Journal of Agro-Environment Science, 2021, 40(5):978-986.
|
[37] |
Cheng G W, Wang M J, Chen Y, et al. Source apportionment of water pollutants in the upstream of Yangtze River using APCS-MLR[J]. Environmental Geochemistry and Health, 2020, 42(11):3795-3810.
|
[38] |
马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
|
[38] |
Ma H H, Peng M, Liu F, et al. Bioavailability,translocation,and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1):449-459.
|
[39] |
余飞, 王佳彬, 王锐, 等. 基于乡镇尺度的地质高背景区耕地土壤重金属来源分析与风险评价[J]. 环境科学, 2023, 44(5):2838-2848.
|
[39] |
Yu F, Wang J B, Wang R, et al. Source analysis and ecological risk assessment of heavy metals in the arable soil at the geological high background,based on the township scale[J]. Environmental Science, 2023, 44(5):2838-2848.
|
[40] |
陈秀端, 卢新卫. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学, 2017, 38(6):2513-2521.
|
[40] |
Chen X D, Lu X W. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics[J]. Environmental Science, 2017, 38(6):2513-2521.
|
[41] |
Xu Z, Mi W B, Mi N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities[J]. Environmental Science and Pollution Research, 2020, 27(31):38835-38848.
|
[42] |
李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析[J]. 环境科学, 2019, 40(2):934-944.
|
[42] |
Li F, Liu S Y, Li Y, et al. Spatiotemporal variability and source apportionment of soil heavy metals in a industrially developed city[J]. Environmental Science, 2019, 40(2):934-944.
|
[43] |
韩琳, 徐夕博. 基于PMF模型及地统计的土壤重金属健康风险定量评价[J]. 环境科学, 2020, 41(11):5114-5124.
|
[43] |
Han L, Xu X B. Quantitative evaluation of human health risk of heavy metals in soils based on positive matrix factorization model and geo-statistics[J]. Environmental Science, 2020, 41(11):5114-5124.
|
[44] |
陈雪, 刘鸿雁, 吴攀, 等. 基于GIS和PMF的铜仁植烟土壤重金属污染特征与来源解析[J]. 农业环境科学学报, 2022, 41(4):794-801.
|
[44] |
Chen X, Liu H Y, Wu P, et al. Contamination characteristics and source apportionment of heavy metals in tobacco-planting soils in Tongren County based on GIS and PMF methods[J]. Journal of Agro-Environment Science, 2022, 41(4):794-801.
|
[45] |
中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. GB 2762—2022食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2022.
|
[45] |
National Health and Family Planning Commission of the People's Republic of China,State Food and Drug Administration. GB 2762—2022 National standard for food safety,limits of contaminants in food[S]. Beijing: Standards Press of China, 2022.
|
[46] |
杨琼, 杨忠芳, 张起钻, 等. 中国广西岩溶地质高背景区土壤—水稻系统Cd等重金属生态风险评价[J]. 中国科学:地球科学, 2021, 51(8):1317-1331.
|
[46] |
Yang Q, Yang Z F, Zhang Q Z, et al. Ecological risk assessment of Cd and other heavy metals in soil-rice system in high Karst geological background area of Guangxi,China[J]. Scientia Sinica:Terrae, 2021, 51(8):1317-1331.
|
[47] |
李杰, 战明国, 钟晓宇, 等. 广西典型岩溶地区重金属在土壤—农作物系统中累积特征及其影响因素[J]. 环境科学学报, 2021, 41(2):597-606.
|
[47] |
Li J, Zhan M G, Zhong X Y, et al. Distribution and accumulation of heavy metals in soil-crop systems from a typical carbonate rocks area in Guangxi[J]. Acta Scientiae Circumstantiae, 2021, 41(2):597-606.
|
[48] |
郭超, 文宇博, 杨忠芳, 等. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报:自然科学, 2019, 55(4):678-687.
|
[48] |
Guo C, Wen Y B, Yang Z F, et al. Factors controlling the bioavailability of soil cadmium in typical Karst areas with high geogenic background[J]. Journal of Nanjing University:Natural Science, 2019, 55(4):678-687.
|
[1] |
HAN Bing, HUANG Yong, LI Huan, AN Yong-Long. Distributions, enrichment characteristics, and sources of heavy metals in soils in Fangshan District, Beijing[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 820-833. |
[2] |
SHI Jing-Tao, LIU Jun-Jian, ZHANG Jun-Chao, WANG Jiang-Yu-Long, JIANG Yu-Ge, WANG Mo, LI Heng-Fei, YANG Wen-Hao, YAN Xiang-Jin. Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 834-846. |
|
|
|
|