|
|
Application of comprehensive soil and heavy sand survey in tin polymetallic prospecting in Kundelai Zhalage area, Zhalute Banner, Inner Mongolia |
YANG Xing1( ), GUAN Yu-Chun1, ZOU Tao2, LI Wei1 |
1. Beijing Institute of Geology for Mineral Resources Co., Ltd., Beijing 100012, China 2. Sino-Zijin Resources Co., Ltd., Beijing 100012, China |
|
|
Abstract In order to clarify the prospecting direction and achieve a breakthrough, 1:10 000 soil geochemical survey and natural heavy sand survey were carried out in Kundelezalag area, and the geochemical characteristics of 10 elements such as tungsten, tin, lead and zinc in the soil and the heavy mineral characteristics of natural heavy sand were preliminarily summarized. Correlation analysis is used to analyze the symbiotic combination of elements. The geochemical elements in the area are Pb-Zn-Ag-Cu and Sn-W-Mo-Bi, in which Sn is the most enriched and differentiated, and the peak value of Sn content is more than 300×10-6。 23 kinds of heavy minerals, such as cassiterite, garnet, ilmenite and zircon, were identified through natural heavy sand survey, and the genesis of tin polymetallic deposits in the mining area was preliminarily identified through the combination characteristics of heavy minerals, cassiterite extension coefficient and geological characteristics. Finally, according to the geochemical characteristics of elements, the distribution and combination characteristics of cassiterite and the metallogenic clues found in the anomaly area, the Cu-W polymetallic prospecting prediction area and Cu-Zn-Sn-W polymetallic prospecting prediction area in the south of Kundli-Zarage are selected.
|
Received: 15 June 2022
Published: 11 October 2023
|
|
|
|
|
|
Geological map of mining area
|
参数 | Cu | Pb | Zn | Ag | As | Hg | W | Sn | Mo | Bi | 原始 数据 | 最小值 | 5.30 | 12.40 | 42.10 | 0.03 | 4.30 | 7.00 | 1.02 | 2.60 | 0.40 | 0.19 | 最大值 | 48.60 | 167.00 | 222.00 | 0.23 | 153.00 | 74.00 | 23.00 | 300.00 | 3.55 | 6.64 | 平均值 | 17.50 | 26.40 | 80.90 | 0.10 | 20.70 | 35.00 | 2.75 | 17.20 | 0.80 | 0.58 | 标准离差 | 3.70 | 13.80 | 19.20 | 0.03 | 17.50 | 11.00 | 2.84 | 31.90 | 0.23 | 0.63 | CV1 | 0.21 | 0.52 | 0.24 | 0.26 | 0.84 | 0.30 | 1.03 | 1.86 | 0.29 | 1.08 | q | 0.72 | 1.00 | 1.13 | 1.20 | 1.51 | 0.85 | 1.08 | 2.40 | 0.94 | 1.40 | 剔除 离群 数据 | 最小值 | 11.90 | 17.20 | 52.80 | 0.04 | 4.30 | 7.00 | 1.02 | 2.60 | 0.57 | 0.19 | 最大值 | 23.70 | 30.40 | 106.00 | 0.15 | 28.60 | 64.00 | 2.88 | 11.60 | 1.00 | 0.79 | 平均值 | 17.40 | 23.40 | 77.70 | 0.10 | 15.70 | 35.00 | 1.93 | 5.20 | 0.76 | 0.42 | 标准离差 | 2.10 | 2.30 | 10.00 | 0.02 | 5.00 | 10.00 | 0.33 | 2.20 | 0.08 | 0.12 | CV2 | 0.12 | 0.10 | 0.13 | 0.19 | 0.32 | 0.29 | 0.17 | 0.43 | 0.11 | 0.29 | q | 0.72 | 1.00 | 1.11 | 1.19 | 1.40 | 0.85 | 1.03 | 1.72 | 0.94 | 1.30 | 中国土壤平均丰度[9] | 24.00 | 23.00 | 68.00 | 0.08 | 10.00 | 40.00 | 1.80 | 2.50 | 0.80 | 0.30 |
|
Characteristics of soil geochemical element parameters in mining area
|
|
Variation coefficient diagram of ore-forming elements in the mining area
|
元素 | Cu | Pb | Zn | Bi | Mo | W | Sn | Ag | As | Hg | | Cu | 1.000 | | | | | | | | | | | Pb | 0.034 | 1.000 | | | | | | | | | | Zn | 0.041 | 0.732 | 1.000 | | | | | | | | | Bi | 0.114 | -0.028 | -0.112 | 1.000 | | | | | | | | Mo | 0.222 | 0.217 | 0.093 | 0.313 | 1.000 | | | | | | | W | 0.005 | -0.096 | -0.214 | 0.500 | 0.226 | 1.000 | | | | | | Sn | 0.248 | -0.079 | -0.043 | 0.098 | 0.205 | 0.197 | 1.000 | | | | | Ag | 0.430 | 0.481 | 0.437 | 0.006 | 0.172 | -0.184 | -0.011 | 1.000 | | | | As | 0.201 | -0.072 | -0.155 | 0.663 | 0.380 | 0.596 | 0.329 | -0.028 | 1.000 | | | Hg | 0.199 | 0.017 | -0.081 | 0.111 | 0.093 | 0.031 | -0.103 | 0.148 | -0.049 | 1.000 | |
|
Correlation coefficient of soil elements in mining area
|
|
Correlation of ore-forming elements in the mining area
|
|
R-type cluster analysis pedigree of soil geochemical survey in mining area
|
异常下限 | Cu | Pb | Zn | Ag | As | Hg | W | Sn | Mo | Bi | 外带 | 19.00 | 25.00 | 86.00 | 0.11 | 23.00 | 40.00 | 2.80 | 17.00 | 0.85 | 0.60 | 中带 | 20.00 | 28.00 | 95.00 | 0.12 | 26.00 | 42.00 | 3.30 | 25.00 | 0.90 | 0.70 | 内带 | 21.00 | 44.00 | 115.00 | 0.14 | 40.00 | 49.00 | 6.00 | 55.00 | 0.95 | 1.40 |
|
Lower limit of geochemical anomaly of soil in mining area
|
|
Abnormal distribution of ore-forming elements in the mining area
|
点号 | ZTR/% | 样品质量/g | 重矿物部分质量/g | 主要矿物组合 | ZS01 | 6.67 | 9.7 | 3.88 | 绿帘石33.5-赤褐铁矿24.94-石榴子石14.02-钛铁矿11.22-锆石2.98-锡石2.41-榍石2.41-磁铁矿2.41-白钛石1.07-角闪石0.57-铬尖晶石0.47-电气石0.47-金红石0.38-锐钛矿0.08-十字石0.11-独居石****-黄玉**-萤石***-辉石***-尖晶石*-其他2.9 | ZS02 | 12.3 | 20 | 3.967 | 钛铁矿20.73-绿帘石19.53-石榴子石18.27-赤褐铁矿13.42-锡石6.42-锆石5.62-磁铁矿3.75-榍石2.15-白钛石1.32-电气石0.58-金红石0.4-角闪石0.4-锐钛矿0.18-十字石0.12-独居石****-磷灰石***-黄玉***-萤石***-辉石***-铬尖晶石***直闪石**-尖晶石*-其他7.11 | ZS03 | 5.3 | 20.9 | 4.416 | 绿帘石28.39-锡石24.18-石榴子石11.31-钛铁矿10.88-赤褐铁矿9-锆石2.64-榍石2.64-磁铁矿1.57-电气石1.04-白钛石0.92-角闪石0.31-锐钛矿0.15-金红石0.09-独居石0.09-十字石0.09-黄玉0.03-铬尖晶石***-辉石***刚玉*-直闪石*-蓝晶石*-黄铁矿*-自然铅*-磷钇矿*-其他6.45 |
|
Characteristics of heavy minerals in mining area
|
|
Prospect map of prospecting and prediction in Kundelai Zhalage area
|
|
Field mineralized hand samples and microscopic photos in the prediction area a—cassiterite bearing quartz veinlet;b,c—wolframite bearing quartz veinlet;d—limonitized and Greisenized altered rock;e,f—lead zinc mineralized altered rock;g—wolframite micrograph;h,i—cassiterite mirror photo;Wf—wdframite;Cst—cassiterite;Chl—chlorite;Qtz—quartz
|
23]) ">
|
Regional 1:200 000 geochemical anomaly analysis map (revised according to the 1:200 000 geochemical map of Inner Mongolia[23])
|
| 园林子北山[24] | 维拉斯托[21] | 罕山林场[6] | 坤得来扎拉格[25-26] | 地球化学特征 | 主成矿元素为W、Sn、Bi、Mo,其次为Cu、Ag、Pb、Zn、Sb,并伴有Au、As、Hg元素异常,组合异常面积80 km2(1:5万) | 异常按面积依次为Sn、W、As、Zn、Pb、Sb、Ag、Au、Mo、Cu,组合异常面积8.96 km2(1:5万) | 发育Sn、Pb、Zn、Ag、Au、As等组合异常,组合异常面积11.2 km2(1:5万) | 区内划定一丙类异常,元素组合以Sn、W、As、Au、Co为主,组合异常面积2.58 km2(1:5万) | 地球物理特征 | 含矿岩石具低阻高极化特征 | 成矿中心的锡钨多金属矿对应物探测量的低重力、中低极化率、中高阻率与低磁特征,局部出现略高激电异常 | 高视极化率、中高视电阻率的异常 | 中低极化率与低磁特征 | 赋矿地层 | 上二叠统林西组,为一套海陆交互相和内陆湖相碎屑岩组合建造。岩性主要为砂岩、凝灰质板岩及少量泥岩 | 锡林郭勒杂岩,主体为宝音图群黑云斜长片麻岩,局部可见少量闪斜长片麻岩 | 上侏罗统满克头鄂博组,岩性主要为流纹质含角砾岩屑晶屑凝灰岩、流纹质含角砾岩屑晶屑熔结凝灰岩、流纹岩等 | 下白垩统白音高老组,岩性主要为流纹岩、流纹质晶屑凝灰岩等;上侏罗统满克头鄂博组,岩性主要为流纹岩、流纹质晶屑凝灰岩等 | 围岩蚀变 | 硅化、绢云母化、电气石化、褐铁矿化、绢英岩化等 | 云英岩化、硅化、褐铁矿化、锡钨钼矿化及铅锌银矿化等 | 硅化、绿泥石化、碳酸盐化、叶腊石化、萤石矿化等 | 云英岩化、绢英岩化、褐铁矿化、硅化、绿泥石化、萤石化等 | 金属矿物组合 | 锡石、黄铁矿、磁黄铁矿、黄铜矿、毒砂、磁铁矿、钛铁矿等 | 锡石、闪锌矿,含少量黄铜矿、黝锡矿、黝铜矿、黄铁矿、斜方砷铁矿等 | 黄铜矿、斑铜矿、辉银矿、方铅矿、闪锌矿、锡石等 | 锡石、黑钨矿、磁铁矿、黄铁矿等 |
|
Comparison of characteristics between hydrothermal vein type tin polymetallic deposits and prediction areas in the region
|
[1] |
王京彬, 王玉往, 王莉娟. 大兴安岭南段锡多金属成矿系列[J]. 地质与勘探, 2005, 41(6): 18-23.
|
[1] |
Wang J B, Wang Y W, Wang L J. Tin-polymetallic metallogenic series in the southern part of Da Hinggan Mountains,China[J]. Geology and Prospecting, 2005, 41(6):18-23.
|
[2] |
王莉娟, 王京彬, 王玉往, 等. 内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J]. 岩石学报, 2002, 18(4): 575-584.
|
[2] |
Wang L J, Wang J B, Wang Y W, et al. REE geochemistry of the Huanggu angliang skarn Fe-Sn deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2002, 18(4): 575-584.
|
[3] |
王玉往, 王京彬, 王莉娟. 内蒙古大井锡多金属矿床锡矿物特征[J]. 地质与勘探, 2006, 42,(4):51-56.
|
[3] |
Wang Y W, Wang J B, Wang L J. Characteristics of tin minerals from Dajing tin-polymetallic deposit,Inner Mongolia,China[J]. Geology and Prospecting, 2006, 42(4):51-56.
|
[4] |
周振华, 吕林素, 冯佳睿, 等. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义[J]. 岩石学报, 2010, 26(3): 667-679.
|
[4] |
Zhou Z H, Lyu L S, Feng J R, et al. Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance,Inner Mongolia[J]. Acta Petrologica Sinica, 2010, 26(3):667-679.
|
[5] |
翟德高, 刘家军, 杨永强, 等. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 2012, 31(4): 513-523.
|
[5] |
Zhai D G, Liu J J, Yang Y Q, et al. Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe-Sn deposit,Inner Mongolia[J]. Acta Petrologica Et Mineralogica, 2012, 31(4):513-523.
|
[6] |
沈存利, 高有库, 张天平, 等. 内蒙古罕山林场铜银锡多金属矿床的发现及意义[J]. 矿产勘查, 2013, 4(5):475-484.
|
[6] |
Shen C L, Gao Y K, Zhang T P, et al. Discovery of the Hanshanlinchang Cu-Ag-Sn polymetallic deposit and its significance for prospecting,Inner Mongolia[J]. Mineral Exploration, 2013, 4(5):475-484.
|
[7] |
祝新友, 张志辉, 付旭, 等. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 2016, 43(1):188-208.
|
[7] |
Zhu X Y, Zhang Z H, Fu X, et al. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit,Inner Mongolia[J]. Geology in China, 2016, 43(1):188-208.
|
[8] |
薛盈杉, 袁慧香, 贺根文. 赣南青塘地区土壤沉积物地球化学特征及找矿方向[J]. 金属矿山, 2021, 56(8):131-141.
|
[8] |
Xue Y S, Yuan H X, He G W. Geochemical characteristics and prospecting direction of soil sediments in Qingtang area,Southern Jiangxi Province[J]. Metal Mine, 2021, 56(8):131-141.
|
[9] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
|
[9] |
Chi Q H, Yan M C. Handbook of applied geochemical element abundance data[M]. Beijing: Geological Publishing House, 2007.
|
[10] |
陈冬, 梁树能. 江苏溧水胡家店地区土壤地球化学特征及找矿预测[J]. 物探与化探, 2015, 39(4): 715-721.
|
[10] |
Chen D, Liang S N. Soil geochemical characteristics and prospecting prediction of the Hujiadian area in Lishui,Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2015, 39(4):715-721.
|
[11] |
李超, 刘永俊, 李海洋, 等. 辽宁省苇子峪地区水系沉积物地球化学特征及金多金属找矿远景预测[J]. 东华理工大学学报:自然科学版, 2021, 44(2): 140-149.
|
[11] |
Li C, Liu Y J, Li H Y, et al. Geochemistry of stream sediment and metallogenic prognosis of gold-polymetallic ore deposits in Weiziyu area, Liaoning Province[J]. Journal of East China University of Technology:Natural Science, 2021, 44(2):140-149.
|
[12] |
杨星, 管育春, 蒋斌斌, 等. 土壤地球化学测量在内蒙古毛盖吐地区锡多金属找矿中的应用[J]. 矿产勘查, 2021, 12(3): 677-684.
|
[12] |
Yang X, Guan Y C, Jiang B B, et al. Application of soil geochemical survey in prospecting for tin polymetals deposit in Maogaitu area,Inner Mongolia[J]. Mineral Exploration, 2021, 12(3): 677-684.
|
[13] |
杨星, 管育春, 邹滔, 等. 大兴安岭南段大陶好沟地区地球化学特征与锡多金属找矿靶区[J]. 矿产勘查, 2021, 12(4): 849-857.
|
[13] |
Yang X, Guan Y C, Zou T, et al. Geochemical characteristics and tin polymetallic prospecting target area in Dataohaogou area, southern Great Xing'an Range[J]. Mineral Exploration, 2021, 12(4): 849-857.
|
[14] |
张大可, 张德生, 陈英富, 等. 矿产资源调查中自然重砂测量成果的重新应用——以河北蔚县地区为例[J]. 中国地质, 2007, 34(4): 723-729.
|
[14] |
Zhang D K, Zhang D S, Chen Y F, et al. The re-application of placer mineral survey data in mineral resources investigation:A case study of the Yuxian area in Hebei[J]. Geology in China, 2007, 34 (4): 723-729.
|
[15] |
赖杨, 田恩源, 龚大兴, 等. 川西斯跃武锂—铌—钽稀有金属矿集区自然重砂异常特征[J]. 矿产综合利用, 2019, 40 (3): 65-70.
|
[15] |
Lai Y, Tian E Y, Gong D X, et al. Natural heavy mineral anomaly characteristics and ore potential analysis of the Siyuewu Li-Nb-Ta rare metals ore-concentrated area in Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(3): 65-70.
|
[16] |
张翔, 董国臣, 申俊峰, 等. 锡矿自然重砂矿物组合规律及其找矿意义[J]. 地质通报, 2014, 33(12): 1869-1877.
|
[16] |
Zhang X, Dong G C, Shen J F, et al. Combination features and exploration significance of natural heavy minerals from tin deposits[J]. Geological Bulletin of China, 2014, 33(12): 1869-1877.
|
[17] |
张媛媛, 张鹏飞, 聂逢君, 等. 鄂尔多斯盆地北部直罗组砂岩重矿物分布特征及其指示意义[J]. 煤田地质与勘探, 2021, 49(4): 142-152.
|
[17] |
Zhang Y Y, Zhang P F, Nie F J, et al. Distribution characteristics of heavy minerals in the sandstone of Zhiluo Formation of northern Ordos Basin and its implication[J]. Coal Geology & Exploration, 2021, 49(4): 142-152.
|
[18] |
董国臣, 李景朝, 文辉, 等. 中国自然重砂分布特征及其意义[J]. 地质通报, 2014, 33(12): 1861-1868.
|
[18] |
Dong G C, Li J C, Wen H, et al. The distribution of natural heavy minerals in China and its significance[J]. Geological Bulletin of China, 2014, 33(12): 1861-1868.
|
[19] |
董国臣, 李胜荣, 申俊峰, 等. 自然重砂成因矿物学特征及找矿指示作用[J]. 地学前缘, 2020, 27(5): 171-178.
|
[19] |
Dong G C, Li S R, Shen J F, et al. Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting[J]. Earth Science Frontiers, 2020, 27(5): 171-178.
|
[20] |
王春女, 王全明, 于晓飞, 等. 大兴安岭南段锡矿成矿特征及找矿前景[J]. 地质与勘探, 2016, 52(2):220-227.
|
[20] |
Wang C N, Wang Q M, Yu X F, et al. Metallognetic characteristics of tin and ore-search prospect in the southern part of Da Hinggan Mountains[J]. Geology and Exploration, 2016, 52(2):220-227.
|
[21] |
邹滔, 祝新友, 杨尚松, 等. 大兴安岭南段锡多金属矿找矿勘查综合模型——以维拉斯托锡多金属矿成矿系统为例[J]. 地质学报, 2022, 96(2):673-690.
|
[21] |
Zou T, Zhu X Y, Yang S S, et al. A comprehensive model of tin polymetallic ore prospecting and exploration in the southern Great Xing'an Range:A case study of the ore-forming system of Weilasituo polymetallic ore[J]. Acta Geologica Sinica, 2022, 96(2): 673-690.
|
[22] |
周振华, 王挨顺, 李涛. 内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究[J]. 矿床地质, 2011, 30(5):867-889.
|
[22] |
Zhou Z H, Wang A S, Li T. Fluid inclusion characteristics and metallogenic mechanism of Huanggang Sn-Fe deposit in Inner Mongolia[J]. Mineral Deposits, 2011, 30(5):867-889.
|
[23] |
许立权, 张彤, 闫洁, 等. 内蒙古自治区重要矿产预测成果报告[R]. 内蒙古自治区地质调查院, 2013.
|
[23] |
Xu L Q, Zhang T, Yan J, et al. Metallogenic prediction report of important minerals in Inner Mongolia Autonomous Region[R]. Inner Mongolia Bureau of Land and Resources, 2013.
|
[24] |
方曙, 高玉石, 邵建设, 等. 内蒙古自治区克什克腾旗沙胡同等两幅1:5万矿产调查成果报告[R]. 内蒙古自治区第十地质矿产勘查开发院, 2008.
|
[24] |
Fang S, Gao Y S, Shao J S, et al. Two 1:50000 mineral investigation results reports, including shahutong, keshketeng banner, Inner Mongolia Autonomous Region[R]. Inner Mongolia Tenth Geological Mineral Exploration and Development institute, 2008.
|
[25] |
李德先, 毛启贵, 邹滔, 等. 大兴安岭中南段有色金属基地综合地质调查报告[R]. 北京矿产地质研究院有限责任公司, 2021.
|
[25] |
Li D X, Mao Q G, Zou T, et al. Comprehensive geological survey report of nonferrous metal base in central and southern Daxing 'anling[R]. Beijing Institute of Geology for Mineral Resources Co.,Ltd, 2021.
|
[26] |
王权, 杨耀华, 吴仲华, 等. 内蒙古通辽市扎鲁特旗塔拉布拉克等四幅1:5 万区域地质矿产调查报告[R]. 山西省地质调查院, 2009.
|
[26] |
Wang Q, Yang Y H, Wu Z H, et al. Four 1:50,000 regional geological and mineral survey reports, such as Talabulake, Zhalute Banner, Tongliao City, Inner Mongolia[R]. Shanxi Institute of Geological Survey, 2009.
|
[1] |
WAN Tai-Ping, ZHANG Li, LIU Han-Liang. Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1179-1188. |
[2] |
LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng. Comparison of deep learning algorithms for geochemical anomaly identification[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 179-189. |
|
|
|
|