|
|
Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang, Yunnan |
YOU Yue-Xin1,2( ), DENG Ju-Zhi1,2( ), CHEN Hui1,2, YU Hui1,2, GAO Ke-Ning1,2 |
1. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China 2. School of Geophysics and Measurement-control Technology,East China University of Technology,Nanchang 330013, China |
|
|
Abstract Laochang, Lancang, Yunnan is one of the most important polymetallic mining areas in the southern part of Sanjiang Tethys metallogenic belt. After years of mining, the shallow resources are nearly exhausted. In recent years, granite porphyry and porphyry polymetallic mineralization have been newly discovered in the deep part of the mining area, highlighting the prospecting potential of deep polymetallic deposits. In order to trace the occurrence of deep ore-controlling strata and structures in the study area and help to make a breakthrough in deep ore prospecting, high-power induced polarization method and audio magnetotelluric method were implemented to image the deep structure situated. Results obtained from the inversion of the measured induced polarization and electromagnetic data recuperated the distribution of induced polarization anomalies and the characteristics of deep electrical structure within the study area. Combined with the available regional geological settings, the main conclusions are as follows: The low resistance and high polarization anomalies in the northwest of the survey area are deeply related to the surface ferromanganese, silver manganese, and deep polymetallic mineralization, and the high resistance and high polarization anomalies in the middle and east of the survey area are in good agreement with the deep polymetallic mineralization. The upper Carboniferous limestone and dolomite strata are thick in the west and thin in the east, with the west strata dipping to SW and the east strata overlying the Yiliu Formation of the lower Carboniferous. The concealed granite porphyry dips in NE direction, and the coupling part between its deep 2 300~2 800 m horizontal section and deep fault is a favorable area for deep polymetallic mineralization. Notably, joint interpretation yielded from the high-power induced polarization method and the audio magnetotelluric method applied improved the reliability of deep polymetallic ore detection and provided more information of positioning the subsequent drilling layout.
|
Received: 22 November 2022
Published: 05 July 2023
|
|
|
|
|
3]) ">
|
Regional geological sketch of Lancang Area, Yunnan Province (modified from reference[3])
|
分层代号 | 主要岩性 | 含矿性 | 旋回划分 | | 凝灰岩、沉凝灰岩 | 含矿 | Ⅲ | 火山角砾凝灰岩 | β | 玄武岩 | | 熔结凝灰岩 | 含矿 | | 凝灰岩、沉凝灰岩 | 主矿层 | Ⅱ | | 凝灰角砾岩 | | α | 集块岩 | | Ⅰ | 安山岩 | | β | 玄武岩 | | 熔结角砾岩 | | | 熔结角砾岩 | | 安山质凝灰岩 | |
|
Lithology and cycle division of volcanic rocks in Laochangmining area
|
地层 | 标本数 | 岩(矿)石名称 | 电阻率ρ/(Ω·m) | 极化率η/% | 变化范围 | 几何均值 | 变化范围 | 几何均值 | 、 、 | 10 | 铅锌矿(含黄铁矿) | 2~34 | 5.5 | 10.25~58.81 | 24.10 | C2+3 | 3 | 铁锰矿石(有裂隙含褐铁矿较多) | 3~16 | 7.3 | 1.27~2.94 | 11.30 | 4 | 锰矿石 | 480~776 | 604 | 8.9~13.2 | 1.83 | | 5 | 泥晶灰岩 | 191~401 | 248 | 0.21~0.39 | 0.26 | | 6 | 白云质灰岩 | 1048~4265 | 1827 | 0.48~1.52 | 0.81 | | 6 | 珊瑚灰岩 | 1171~3790 | 1908 | 0.43~0.76 | 0.53 | | 9 | 白云质灰岩 | 1064~2947 | 1893 | 0.19~0.59 | 0.35 | | 10 | 沉凝灰岩 | 119~841 | 327 | 0.49~2.94 | 1.81 | | 2 | 玄武岩 | 1492~1985 | 1765 | 1.34~6.0 | 3.10 | 3 | 玄武质凝灰岩 | 392~990 | 678 | 0.28~1.46 | 0.66 | 5 | 玄武质凝灰岩(含铅锌矿、黄铁矿) | 82~110 | 95 | 5.46~10.67 | 7.63 | | 13 | 粗面安山质凝灰岩(富含黄铁矿、黄铜矿) | 6~205 | 65 | 7.01~38.39 | 16.10 | 4 | 粗面玄武质硅化凝灰岩 | 796~1675 | 1083 | 1.45~2.16 | 2.14 | | 12 | 安山质凝灰角砾岩(含黄铁矿) | 25~196 | 56 | 6.38~23.88 | 13.10 | α | 4 | 安山质集块岩、凝灰角砾岩(含黄铁矿) | 49~84 | 70 | 7.31~18.51 | 10.65 | β | 15 | 玄武岩、玄武质熔结角砾岩 | 281~2911 | 642 | 0.4~8.01 | 2.33 | D1 | 7 | 石英砂岩 | 480~2247 | 944 | 0.74~2.04 | 1.22 | ~ (按火山岩 是否含矿 分别统计) | 31 | 含矿火山岩(玄武质凝灰岩、粗面安山 质凝灰岩、安山质凝灰角砾岩) | 6~205 | 63.7 | 5.46~38.39 | 13.40 | 36 | 火山岩(凝灰岩、玄武岩、 集块岩、熔结角砾岩) | 203~2911 | 647 | 0.28~8.01 | 1.82 |
|
Electrical parameters of rock (ore) in Laochang mining area
|
|
Distribution map of high-power induced polarization sounding and AMT survey stations in the study area
|
|
Distribution of apparent polarizability in induced polarization intermediate gradient of study area
|
|
Distribution of apparent resistivity in induced polarization intermediate gradient of study area
|
|
Inversion results of measured induced polarization soundingin data in the study area a—measured data of CS1;b—measured data of CS2;c—measured data of CS3;d—inversion result of CS1;e—inversion result of CS2;f—inversion result of CS3
|
|
Comprehensive geophysical interpretation a—2D inversion results of AMT;b—interpretation model
|
[1] |
王安建, 曹殿华, 管烨, 等. 西南三江成矿带中南段金属矿床成矿规律与若干问题探讨[J]. 地质学报, 2009, 83(10):1365-1375.
|
[1] |
Wang A J, Cao D H, Guan Y, et al. Metallogenic belts of south Three Rivers region,southwest China:Distribution,characteristics,and discussion[J]. Acta Geologica Sinica, 2009, 83(10):1365-1375.
|
[2] |
高兰, 肖克炎, 丛源, 等. 西南三江锌铅银铜锑金成矿带成矿特征及资源潜力[J]. 地质学报, 2016, 90(7):1650-1667.
|
[2] |
Gao L, Xiao K Y, Cong Y, et al. Metallogenic characteristics and mineral resource potential of the southwestern Shanjiang Zn-Pb-Cu-Ag-Sb-Au metallogenic belt[J]. Acta Geologica Sinica, 2016, 90(7):1650-1667.
|
[3] |
李峰, 鲁文举, 杨映忠, 等. 危机矿山成矿规律与找矿研究:以云南澜沧老厂矿床为例[M]. 昆明: 云南科技出版社, 2010.
|
[3] |
Li F, Lu W J, Yang Y Z, et al. Metallogenetic regularities and exploration on crisis mine:As exemplified by the Laochang polymetallic deposit,Yunnan[M]. Kunming: Yunnan Science and Technology Press, 2010.
|
[4] |
叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5):1362-1372.
|
[4] |
Ye L, Gao W, Yang Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit,Lancang,Yunnan Province[J]. Acta Petrologica Sinica, 2012, 28(5):1362-1372.
|
[5] |
杨帆. 澜沧老厂多金属矿床叠加成矿系统特征及成矿模式[D]. 昆明: 昆明理工大学, 2014.
|
[5] |
Yang F. Characteristics of superimposed metallogenic system and metallogenic model of Laochang polymetallic deposit in Lancang[D]. Kunming: Kunming University of Science and Technology, 2014.
|
[6] |
张云付. 云南澜沧老厂铅锌矿区物化探异常特征及找矿预测[J]. 矿产与地质, 2020, 34(3):510-516.
|
[6] |
Zhang Y F. Geophysical and geochemical anomaly characteristics and prospecting prediction in Laochang lead and zinc mining area in Lancang County of Yunnan[J]. Mineral Resources and Geology, 2020, 34(3):510-516.
|
[7] |
李小明, 王党靠, 李得元, 等. 云南澜沧老厂银铅锌铜多金属矿床流体化学特征及找矿方向预测[J]. 云南冶金, 2022, 51(3):12-16,24.
|
[7] |
Li X M, Wang D K, Li D Y, et al. Chemical characteristics and prospecting direction prediction of Silver-lead-zinc copper polymetallic deposits’fluid in Laocang of Lancang,Yunnan[J]. Yunnan Metallurgy, 2022, 51(3):12-16,24.
|
[8] |
袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1744-1805.
|
[8] |
Yuan G Q, Xiong S Q, Meng Q M, et al. Geophysical exploration technology and application research[J]. Acta Geologica Sinica, 2011, 85(11):1744-1805.
|
[9] |
张光之, 周立国, 王延浩. 综合电法在内蒙古查敖包银铅锌矿区的应用[J]. 地球物理学进展, 2015, 30(2):867-871.
|
[9] |
Zhang G Z, Zhou L G, Wang Y H. Application of integrated electrical mathods to silver lead-zinc mine zone of Chaaobao in Inner Mongolia[J]. Progress in Geophysics, 2015, 30(2):867-871.
|
[10] |
毕炳坤, 常云真, 施强, 等. 综合物探在崤山东部浅覆盖区勘查银多金属矿床中的应用[J]. 物探与化探, 2019, 43(5):976-985.
|
[10] |
Bi B K, Chang Y Z, Shi Q, et al. The application of geophysical exploration to prospecting for silver-lead-zinc deposits in shallow cover areas of eastern Xiaoshan[J]. Geophysical and Geochemical Exploration, 2019, 43(5):976-985.
|
[11] |
张前进, 杨进. 综合电法在深部隐伏矿体勘查中的应用实例[J]. 物探与化探, 2010, 34(1):40-43.
|
[11] |
Zhang Q J, Yang J. The application of integrated electric methods to the exploration of deep concealed ore bodies[J]. Geophysical and Geochemical Exploration, 2010, 34(1):40-43.
|
[12] |
杨宗耀, 唐菊兴, 任东兴, 等. 西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J/OL]. 地球科学:1-30[2023-04-06]. http://kns.cnki.net/kcms/detail/42.1874.P.20220607.0926.006.html.
|
[12] |
Yang Z Y, Tang J X, Ren D X, et al. Geochemical and geophysical exploration in Sinongduo Ag polymetallic deposit,Tibet[J/OL]. Earth Science:1-30[2023-04-06]. http://kns.cnki.net/kcms/detail/42.1874.P.20220607.0926.006.html.
|
[13] |
Farquharson C G, Craven J A. Three-dimensional inversion of magnetotelluric data for mineral exploration:An example from the McArthur River uranium deposit,Saskatchewan,Canada[J]. Journal of Applied Geophysics, 2009, 68(4):450-458.
|
[14] |
Garcia X, Jones A G. Atmospheric sources for audio-magnetotelluric (AMT) sounding[J]. Geophysics, 2002, 67(2):448-458.
|
[15] |
汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.
|
[15] |
Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface:A review[J]. Chinese Journal of Geophysics, 2015, 58(8):2681-2705.
|
[16] |
何帅, 杨炳南, 阮帅, 等. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3):618-627.
|
[16] |
He S, Yang B N, Ruan S, et al. Fine interpretation of the exploration results of diamond-bearing rock masses in maping area,Guizhou using the 3D AMT forward modeling and inversion technologies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):618-627.
|
[17] |
高科宁, 邓居智, 刘文玉, 等. 黑龙江省三合屯金矿床深部电性结构与成矿模式[J]. 吉林大学学报:地球科学版, 2022, 52(3):684-700.
|
[17] |
Gao K N, Deng J Z, Liu W Y, et al. Deep electrical structure and metallogenic model in Sanhetun mining area,Heilongjiang Province[J]. Journal of Jilin University:Earch Science Edition, 2022, 52(3):684-700.
|
[18] |
陈仕炎. 澜沧铅矿老厂矿区综合信息成矿预测[D]. 昆明: 昆明理工大学, 2006.
|
[18] |
Chen S Y. Comprehensive information metallogenic prediction in Laochang mining area of Lancang lead mine[D]. Kunming: Kunming University of Science and Technology, 2006.
|
[19] |
高建国. 澜沧老厂铅锌多金属矿床综合成矿信息与定位定量预测[D]. 昆明: 昆明理工大学, 2007.
|
[19] |
Gao J G. Research on the synthetic metallogenic information and the positioning location and quantitative prediction of resource orientation for Lancang-Laochang lead zinc-polymetallic deposit[D]. Kunming: Kunming University of Science and Technology, 2007.
|
[20] |
Egbert G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2):475-496.
|
[1] |
ZHANG Zhi, XU Hong-Miao, QIAN Jia-Zhong, XIE Jie, CHEN Hao-Long, ZHU Zi-Xang. An application study of the comprehensive geophysical prospecting method in the exploration of mineral water: A case study of the Langqiao area, Jing County[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 690-699. |
[2] |
LUO Wei-Feng, HU Zhi-Fang, GAN Fu-Ping, ZHANG Qing-Yu, KANG Hai-Xia, ZHANG Yun-Xiao. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 824-829. |
|
|
|
|