|
|
Iterative inversion method for ultradeep fault-controlled fracture-vug reservoirs:A case study of the Fuman oilfield,Tarim Basin |
ZHANG Ming( ), LI Xiang-Wen( ), JIN Meng, ZHENG Wei, ZHANG Lei, MA Wen-Gao |
Korla Branch of GRI of BGP Inc.,CNPC,Korla 841000,China |
|
|
Abstract The ultradeep Ordovician limestone fracture-vug reservoirs in the Fuman oilfield on the south bank of the Tahe River in the Tarim Basin is the core target area for the production capacity construction of the oilfield.These reservoirs in the study area contain massive dissolution vugs formed by the formation fracturing due to the strike-slip faulting and thus are highly heterogeneous.The low-frequency models based on conventional wave impedance inversion are built using data on horizons,faults,and logs,and thus they cannot characterize the fault-controlled heterogeneity of the reservoirs.For this reason,this study proposed an iterative inversion method constrained by fault fractured zone facies to predict reservoirs.The technical process of this method is as follows.First,the original seismic data were interpreted to obtain the attribute volumes that can reflect the characteristics of the fault fractured zones of the reservoirs.Then,the attribute volumes were proportionally fused with the initial low-frequency model and the spatial profile data of high-quality reservoirs obtained from the conventional inversion based on wave impedance.As a result,a new heterogeneous low-frequency model was formed.Using this model,multiple rounds of iterative inversions were conducted.The inversion results can truly describe the characteristics of the fault fractured zones in the heterogeneous reservoirs.The prediction results of 10 wells had coincidence rates of up to 92.86%.As indicated by the application,the method proposed in this study can improve the reservoir prediction performance and the prediction precision of fault-controlled reservoirs,thus effectively supporting the work in the study area.
|
Received: 11 February 2022
Published: 24 February 2023
|
|
Corresponding Authors:
LI Xiang-Wen
E-mail: zhangming05@cnpc.com.cn;lxw8225755@163.com
|
|
|
|
T O 3 t—Bottom of Ordovician Yijianfang Formation; —Bottom of upper Cambrian ">
|
Karst model diagram of the strike-slip fault fracture zone(a) and profile of seismic reflection characteristics of the reservoir(b) TS—Silurian bottom; —Bottom of Ordovician Yijianfang Formation; —Bottom of upper Cambrian
|
|
Flow chart of the phase-controlled iterative inversion method
|
|
Depiction effect of micro-reservoir in the Ordovician fault fractured zone of Fuyuan Ⅲ block a—the original seismic profile;b—the micro-reservoir sweet spot attribute profile;c—the spatial profile of the fault fractured zone
|
|
The conventional homogeneous low-frequency model (a) and the heterogeneous low-frequency model afterfusion with the fault fractured zone facies (b) of the Ordovician of Fuyuan Ⅲ block
|
|
Contrasting profile of conventional deterministic inversion results and facies-controlled(fault fractured zone facies)inversion results in Fuyuan Ⅲ block a—the original seismic profile;b—the conventional deterministic inversion profile;c—the facies-controlled(fault fractured zone facies) inversion profile
|
|
Plan comparison of the RMS impedance property of the target layer in the Fuyuan Ⅲ block a—the conventional deterministic inversion plan; b—the facies-controlled (fault fractured zone facies) inversion plan
|
|
Well analysis of facies-controlled (fault fractured zone facies) inversion results in the Fuyuan Ⅲ block
|
|
Comparison of logging impedance and inversion impedance at the target interval of Well C in the Fuyuan Ⅲ block a—comparison of logging impedance(calculation) and inversion impedance(extraction) curves of the target interval;b—distribution histogram
|
井号 | 漏失(放空) 深度/m | 漏失量 /m3 | 反演阻抗值 /(g·cm-3· m·s-1) | 是否 吻合 | well3C | 7564.32~7567.67 | 1484.05 | 16981 | 是 | well303-H1 well303-H1 | 5042.00 | 534.66 | 17094 | 是 | 7138.07~7280.00 | 2153.90 | 16405 | 是 | well303-H7 | 7140.70~7383.00 | 2118.90 | 16848 | 是 | well303H | 7316.63 | 2203.39 | 16742 | 是 | well25-H14 well25-H14 | 7019.32 | 0.50 | 17180 | 否 | 7308.32~7351.00 | 273.10 | 17113 | 是 | well25-H6 well25-H6 | 2376.85~6818.00 | 503.00 | 16912 | 是 | 6943.87~7026.00 | 1877.70 | 16891 | 是 | well25-H8 | 7086.66~7203.00 | 678.80 | 17101 | 是 | well302H | 7112.02~7226.66 | 1826.87 | 16603 | 是 | well32 | 7547.00 | 476.40 | 17086 | 是 | well32-H1 well32-H1 | 7219.36 | 22.00 | 17132 | 是 | 5100.00 | 1292.30 | 16675 | 是 |
|
Statistical table of inversion results of 10wells in the Fuyuan Ⅲ block
|
[1] |
杜金虎, 周新源, 李启明, 等. 塔里木盆地碳酸盐岩大油气区特征与主控因素[J]. 石油勘探与开发, 2011, 38(6):652-661.
|
[1] |
Du J H, Zhou X Y, Li Q M, et al. Characteristics and main controlling factors of carbonate oil and gas areas in Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6):652-661.
|
[2] |
邬光辉, 庞雄奇, 李启明, 等. 克拉通碳酸盐岩构造与油气:以塔里木盆地为例[M]. 北京: 科学出版社, 2016.
|
[2] |
Wu G H, Pang X Q, Li Q M, et al. The structural characteristics of Carbonate rocks and their effects on hydrocarbon exploration in Craton basin:A case study of the Tarim Basin[M]. Beijing: Science Press, 2016.
|
[3] |
韩剑发, 苏洲, 陈利新, 等. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J]. 石油学报, 2019, 40(11):1296-1310.
|
[3] |
Han J F, Su Z, Chen L X, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1296-1310.
|
[4] |
刘立峰, 孙赞东, 杨海军, 等. 缝洞型碳酸盐岩储层地震综合预测——以塔里木盆地中古21井区为例[J]. 中南大学学报:自然科学版, 2011, 42(6):1731-1737.
|
[4] |
Liu L F, Sun Z D, Yang H J, et al. Comprehensive seismic prediction of fractured-vuggy carbonate reservoirs:A case study of ZG21 well area in Tarim Basin[J]. Journal of Central South University:Natural Science Edition, 2011, 42(6):1731-1737.
|
[5] |
温志新, 王红漫, 漆立新, 等. 塔河油田奥陶系缝洞型碳酸盐岩储层预测研究[J]. 地学前缘, 2008, 15(1):94-100.
|
[5] |
Wen Z X, Wang H M, Qi L X, et al. Prediction of Ordovician fractured-vuggy carbonate reservoir in Tahe Oilfield[J]. Earth Science Frontiers, 2008, 15(1):94-100.
|
[6] |
王世星, 曹辉兰, 靳文芳, 等. 碳酸盐岩缝洞系统地震响应特征分析和塔中卡1区缝洞储层预测[J]. 石油物探, 2005, 44(5):421-427.
|
[6] |
Wang S X, Cao H L, Jin W F, et al. Seismic response and prediction of fracture-cavity system in carbonate reservoir:A case study in the Ka-1 field[J]. Geophysical Prospecting for Petroleum, 2005, 44(5):421-427.
|
[7] |
高君, 黄捍东, 季敏, 等. 碳酸盐岩储层地震相控非线性反演技术及应用[J]. 石油物探, 2020, 59(3):396-403.
|
[7] |
Gao J, Huang H D, Ji M, et al. Seismic phase-controlled nonlinear inversion of a carbonate reservoir[J]. Geophysical Prospecting For Petroleum, 2020, 59(3):396-403.
|
[8] |
邹义, 李强, 杨洋, 等. 约束稀疏脉冲反演在哈得逊油田开发中的应用[J]. 石油地质与工程, 2015, 29(1):101-104.
|
[8] |
Zou Y, Li Q, Yang Y, et al. Application of constrained sparse pulse inversion in the development of Hadexun Oilfield Petroleum[J]. Geology and Engineering, 2015, 29(1):101-104.
|
[9] |
李杨. 碳酸盐岩岩石物理与油气储层识别[D]. 成都: 成都理工大学, 2011.
|
[9] |
Li Y. Rock physics and oil and gas reservoir Identification of Carbonate rocks[D]. Chengdu: Chengdu University of Technology, 2011.
|
[10] |
康玉柱. 中国古生代海相油气田发现的回顾与启示[J]. 石油与天然气地质, 2007, 28(5):570-575.
|
[10] |
Kang Y Z. Review and revelation of oil/gas discoveries in the Paleozoic marine strata of China[J]. Oil & Gasgeology, 2007, 28(5):570-575.
|
[11] |
韩剑发, 张海祖, 于红枫, 等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报, 2012, 28(3):769-782.
|
[11] |
Han J F, Zhang H Z, Yu H F, et al. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica, 2012, 28(3):769-782.
|
[12] |
田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3):272-282.
|
[12] |
Tian J, Wang Q H, Yang H J, et al. Petroleum exploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3):272-282.
|
[13] |
朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3):827-844.
|
[13] |
Zhu G Y, Yang H J, Zhu Y F, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area,Tarim basin[J]. Acta Petrologica Sinica, 2011, 27(3):827-844.
|
[14] |
杜金虎, 王招明, 李启明, 等. 塔里木盆地寒武-奥陶系碳酸盐岩油气勘探[M]. 北京: 石油工业出版社, 2010:1-4.
|
[14] |
Du J H, Wang Z M, Li Q M, et al. Oil and gas exploration of Cambrian-Ordovician Carbonate in Tarim Basin[M]. Beijing: Petroleum Industry Press, 2010:1-4.
|
[15] |
Marfurt K J. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006, 71(4):29-40.
|
[16] |
Chopra S, Marfurt K J. Adopting multispectral dip components for coherence and curvature attribute computations[J]. The Leading Edge, 2020, 39(8):593-596.
|
[17] |
Al-Dossary S, Marfurt K J, Bakker P, et al. Volumetric dip and azimuth[C]// Society of Exploration Geophysicists,Geophysical Developments Series, 2007:25-44.
|
[18] |
Kuwahara M, Hachimura K, Eiho S, et al. Processing of RI-angiocardiographic images.In Digital Processing of Biomedical Images[M]. Boston,MA,USA, 1976:187-202.
|
[19] |
Li X W, Li J Y, Li L, et al. Seismic wave field anomaly identification of ultra-deep heterogeneous fractured-vuggy reservoirs:A case study in Tarim Basin,China[J]. Applied Sciences, 2021, 11(24):11802.
|
[20] |
姚清洲, 孟祥霞, 张虎权, 等. 地震趋势异常识别技术及其在碳酸盐岩缝洞型储层预测中的应用——以塔里木盆地英买2井区为例[J]. 石油学报, 2013, 34(1):101-106.
|
[20] |
Yao Q Z, Meng X X, Zhang H Q, et al. Principles and application of a seismic trend anomaly diagnostic technique:A case study on carbonate fractured-cavity reservoirs in Yingmai 2 area,Tarim Basin[J]. Acta Petrolei Sinica, 2013, 34(1):101-106.
|
[21] |
Li X W, Li J Y, Liu Y L, et al. Improved workflow for identifying fault controlled fractured-vuggy body sweets of Ultra deep tight limestone[C]// 82nd EAGE Annual Conference & Exhibition, 2021:1-5.
|
[22] |
郭朝斌, 杨小波, 陈红岳, 等. 约束稀疏脉冲反演在储层预测中的应用[J]. 石油物探, 2006, 45(4):397-400.
|
[22] |
Guo C B, Yang X B, Chen H Y, et al. Constrained sparse pulse inversion research in north of Haitongji depression[J]. Geophysical Prospecting for Petroleum, 2006, 45(4):397-400.
|
[1] |
ZHANG Zhao, YIN Quan-Zeng, ZHANG Long-Fei, ZHANG Da-Ming, ZHANG Shi-Hui, HUANG Guo-Shu, ZHAO Shi-Feng, YANG Biao, TAI Li-Xun, ZHANG Deng-Liang, WANG Jin-Chao, DUAN Gang. Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 926-935. |
[2] |
REN Xian-Jun, LI Zhong, MA Ying-Long, DONG Ping, TIAN Xing-Da. Application of seismic frequency-divided iterative inversion in the prediction of thinly laminated channel sand bodies[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 420-428. |
|
|
|
|