|
|
Fine detection of water-conducting channels in iron mine under strong interferences |
WANG Rong-Jun( ), ZHOU Chao-Qun, CUI Jie, XIE Ming-Xing, QIN Zhuang-Jie |
Beiminghe Iron Mine of Minmetals Hanxing Mining Co., Ltd., Wu’an 056303, China |
|
|
Abstract To achieve the accurate positioning of the water-conducting channels in the areas with unknown anomalous water inrush in the Beiminghe iron mine to ensure the safe production of the mine, this study explored the 11# across-vein roof at -110 m level in this iron mine using the mine transient electromagnetic method (MTEM). Firstly, this study briefly introduced the basic principle of MTEM and theoretically analyzed the characteristics of mine transient electromagnetic response under metal interferences. Then, it analyzed the geophysical characteristics based on the geology of the iron mine and corrected the measured data targeting metal interferences using the coefficient correction method. Afterward, the measured data were used as the initial model for the inversion of full-space transient electromagnetic using the bee colony algorithm, obtaining the high-resolution resistivity images of the working face roof. The images combined with the existing geological data allow for the fine detection of water-rich anomalous areas and water-conducting channels, and the detection results were verified by drilling. The results show that the MTEM can effectively improve the detection accuracy of water-rich anomalous positions in the roof strata of the working face in iron mines by means of effective data processing, thus providing effective technical support for water control in iron mines.
|
Received: 19 November 2021
Published: 03 January 2023
|
|
|
|
|
">
|
The "smoke ring" of mine transient electromagnetic
|
|
Schematic diagram of mine transient electromagnetic detection model
|
|
the attenuation curve with metal interference
|
|
Layout of mine transient electromagnetic survey line
|
|
Attenuation curve before and after metal interference correction
|
|
Attenuation curve before and after 150-point metal interference correction
|
|
Comparison of the correction of metal interference(a) before correction (b) after correction
|
|
Inversion of resistivity by bee colony algorithm
|
孔号 | 钻孔深度/m | 孔内情况 | 1# | 25 | 灰岩,岩石破碎严重,节理裂隙发育,裂隙被黄泥充填,在24 m处有少量出水 | 2# | 40 | 灰岩,岩石较完整,在6 m处开始见铁矿,29.5 m后为采空区 | 3# | 40 | 灰岩,岩石破碎,7~10 m和14~25 m处夹黄泥;在20 m开始出水,25 m后水量增大 |
|
List of actual disclosures of drilling
|
|
The results of drilling peep
|
[1] |
程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8):1742-1750.
|
[1] |
Cheng J L, Li F, Peng S P, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8):1742 -1750.
|
[2] |
赵家宏, 程久龙, 温来福. 基于矿井瞬变电磁法的侏罗系煤层顶板富水性研究[J]. 煤炭技术, 2018, 37(12):97-100.
|
[2] |
Zhao J H, Cheng J L, Wen L F. Study on water-richness of mine roof rock in Jurassic coal seam based on mine transient electromagnetic method[J]. Coal Technology, 2018, 37(12):97-100.
|
[3] |
徐栓祥, 程久龙, 董毅, 等. 矿井瞬变电磁与红外测温联合超前探测方法与应用[J]. 中国矿业, 2019, 28(5):136-139,145.
|
[3] |
Xu S X, Cheng J L, Dong Y, et al. The ahead detection combined method of the mine transient electromagnetic and infrared surveying and its application[J]. China Mining Magazine, 2019, 28(5):136-139,145.
|
[4] |
牟义, 李江华, 徐慧, 等. 矿井瞬变电磁法参数优化试验及超前探测应用[J]. 煤炭科学技术, 2020, 48(6): 184-190.
|
[4] |
Mu Y, Li J H, Xu H, et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology, 2020, 48(6): 184-190.
|
[5] |
贾三石, 邵安林, 王海龙, 等. 基于TEM的井下铁矿采空区探测评价[J]. 东北大学学报:自然科学版, 2011, 32(9):1340-1343.
|
[5] |
Jia S S, Shao A L, Wang H L, et al. Detection and evaluation of underground iron ore goaf based on TEM[J]. Journal of North-eastern University:Natural Science, 2011, 32(9):1340-1343.
|
[6] |
李静, 刘向红, 张平松, 等. 矿井瞬变电磁精细探查技术在铁矿防治水中的应用[J]. 光谱实验室, 2013, 30(4):1807-1812.
|
[6] |
Li J, Liu X H, Zhang P S, et al. Application of MTEM’s fine exploration technology to detection of iron mine[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(4):1807-1812.
|
[7] |
刘殿军, 贾三石, 王恩德, 等. 井下铁矿巷道掘进工作面超前预警探测[J]. 金属矿山, 2014(11):147-150.
|
[7] |
Liu D J, Jia S S, Wang E D, et al. Advanced early warning detection ahead of tunneling in underground iron ore[J]. Mine Metal, 2014(11):147-150.
|
[8] |
平守国, 王永增, 张忠海, 等. 齐大山铁矿南帮含水构造带探测研究[J]. 金属矿山, 2020(1):56-62.
|
[8] |
Ping S G, Wang Y Z, Zhang Z H, et al. Study on the detection of water-bearing structural zones in the south side of Qidashan iron mine[J]. Mine Metal, 2020(1):56-62.
|
[9] |
于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.
|
[9] |
Yu J C. Mine transient electromagnetic prospecting[M]. Xuzhou: China University of Mining and Technology Press, 2007.
|
[10] |
周金, 程久龙, 温来福. 矿井瞬变电磁法反演方法研究进展与展望[J]. 煤矿安全, 2017, 48(4):180-183,187.
|
[10] |
Zhou J, Cheng J L, Wen L F. Research progress and prospect on inversion methods of mine transient electromagnetic method[J]. Safety in Coal Mines, 2017, 48(4):180-183,187.
|
[11] |
李明星, 程建远. 基于标准差标准化的矿井瞬变电磁数据处理方法研究[J]. 煤炭科学技术, 2019, 47(5): 225-229.
|
[11] |
Li M X, Cheng J Y. Study on mine transient electromagnetic data processing method based on standard deviation standardization[J]. Coal Science and Technology, 2019, 47(5): 225-229.
|
[12] |
程久龙, 李明星, 肖艳丽, 等. 全空间条件下矿井瞬变电磁法粒子群优化反演研究[J]. 地球物理学报, 2014, 57(10):3478-3484.
|
[12] |
Cheng J L. Li M X, Xiao Y L, et al. Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space[J]. Chinese Journal of Geophysics, 2014, 57(10):3478-3484.
|
[13] |
李明星. 矿井瞬变电磁PSO-DLS组合算法反演研究[J]. 煤炭科学技术, 2019, 47(9): 268-272.
|
[13] |
Li M X. Study on mine transient electromagnetic method inversion based on PSO-DLS combination algorithm[J]. Coal Science and Technology, 2019, 47(9): 268-272.
|
[14] |
牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
|
[14] |
Niu Z L. The principle of transient electromagnetic method[M]. Changsha: Central South University Press, 2007.
|
[15] |
李飞, 程久龙, 温来福, 等. 瞬变电磁场有限差分与数字滤波双模型三维正演方法[J]. 地球物理学进展, 2020, 35(3): 963-969.
|
[15] |
Li F, Cheng J L, Wen L F, et al. Double model method for 3D TEM modeling based on combination of FDTD and digital filtering method[J]. Progress in Geophysics, 2020, 35(3): 963-969.
|
[16] |
周超群. 强干扰条件下矿井电梯井井壁损伤精细探测[J]. 地球科学前沿, 2021, 11(1): 12-20.
|
[16] |
Zhou C Q. Fine detection of mine elevator shaft wall damage under the condition of strong interference[J]. Advances in Geosciences, 2021, 11(1): 12-20.
|
[17] |
杨允林, 程久龙, 赵家宏, 等. 带式输送机影响下矿井瞬变电磁响应特征与校正研究[J]. 煤矿安全, 2019, 50(7):282-284,288.
|
[17] |
Yang Y L, Cheng J L, Zhao J H, et al. Study on characteristics of mine transient electromagnetic response under the influence of belt conveyor and interference correction[J]. Safety in Coal Mines, 2019, 50(7):282-284,288.
|
[18] |
时志浩, 程久龙, 董毅, 等. 锚网支护对矿井瞬变电磁响应的影响与校正[J]. 煤矿安全, 2019, 50(4):108-111.
|
[18] |
Shi Z H, Cheng J L, Dong Y, et al. Influence of bolt-net support on mine transient electromagnetic response and its correction[J]. Safety in Coal Mines, 2019, 50(4):108-111.
|
[19] |
周金, 程久龙, 温来福. 矿井瞬变电磁金属干扰响应特征与校正方法[J]. 中国矿业, 2017, 26(8):146-149,164.
|
[19] |
Zhou J, Cheng J L, Wen L F. Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying[J]. China Mining Magazine, 2017, 26(8):146-149,164.
|
[20] |
周璇, 刘树才, 常江浩, 等. 金属棚支架对矿井瞬变电磁探测影响及校正技术[J]. 煤炭科学技术, 2014, 42(11): 101-104.
|
[20] |
Zhou X, Liu S C, Chang J H, et al. Influences on metal support to mine transient electromagnetic detection and correction tech-nology[J]. Coal Science and Technology, 2014, 42(11): 101-104.
|
[21] |
Huang S H, Cheng J L, Wen L F, et al. Study on metal interference correction method in mine TEM based on the fitting function[C]// 7th International Conference on Environmental and Engineering Geophysics, 2016.
|
[22] |
Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical Report-TR06, Erciyes. University, Engineering Faculty, Computer Engineering Department, 2005.
|
[1] |
Hao WANG, Jia-Yong YAN, Gui-Xiang MENG, Qing-Tian LU, Xv WANG. Geomagnetic gradient exploration and its test in metal deposits: a case study of the Layikeleke copper-iron deposit[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1173-1181. |
[2] |
HU Bo-Wen, CHEN Li, YAO Hong-Chao, ZHANG Fa-Wang, ZHANG Jin, ZHAO Miao. The application of integrated geophysical exploration to the hydrogeology discrimination of the large fracture tunnel construction period[J]. Geophysical and Geochemical Exploration, 2015, 39(4): 867-871. |
|
|
|
|