|
|
Application of comprehensive geophysical prospecting method in detecting concealed karst collapses |
ZHANG Jian1( ), FENG Xu-Liang2( ), YUE Xiang-Ping3 |
1. The First Geological Mineral Exploration Institute of Gansu Provincial Geology and Mineral Bureau, Tianshui 741020,China 2. School of Earth Sciences and Engineering,Xi’an Shiyou University,Xi’an 710065,China 3. Xi’an Northwest Nonferrous Geophysical and Geochemical Exploration Co., Ltd., Xi’an 710068, China |
|
|
Abstract Karst is widely distributed in China. However, geological disasters frequently occur in karst zones due to the fragile geological environment, which seriously threatens the safety of people’s life and property and cause huge economic losses. In this study, the controlled source audio-frequency magnetotelluric (CSAMT) method and microgravity were used to extract residual gravity anomalies through the two-dimensional inversion of pseudosections and multi-scale wavelet analysis. As a result, rock-soil interfaces of karst zones and the development zones of strong karst were well divided; the locations, burial depths, scales, and spatial distribution of karst caves were delineated. As verified by drilling, the rock-soil interfaces and strong-karst development zones determined by CSAMT interpretation were roughly consistent with those revealed by boreholes, and the sizes and burial depths of collapsed karst caves that were delineated by microgravity roughly correspond to those revealed by boreholes of engineering exploration. These results show that the CSAMT combined with the microgravity method can achieve significant effects in the detection of concealed karst collapses and serves as a scientific detection method for the early warning of the prevention and treatment of potential karst collapses and similar geological disasters.
|
Received: 19 October 2021
Published: 03 January 2023
|
|
Corresponding Authors:
FENG Xu-Liang
E-mail: 546864271@qq.com;fxlchd@163.com
|
|
|
|
|
Regional geological map 1—Jurassic Suining formation;2—Jurassic upper Shaximiao formation;3—Jurassic lower Shaximiao formation; 4—Jurassic Zhenzhuchong formation、Ziliujing formation、Xintiangou formation;5—Triassic Xujiahe formation;6—middle lower Triassic;7—upper Permian Longtan formation;8—CSAMT line PM01 position;9—rivers
|
地层 | 岩性 | 第四系(Q) | 砂黏土 | 须家河组(T3xj) | 长石砂岩、粉砂质泥岩、页岩、粉砂岩 | 雷口坡组(T2l) | 白云岩 | 嘉陵江组四段(T1j4) | 盐溶角砾岩、灰质白云岩 | 嘉陵江组三段(T1j3) | 微晶灰岩、微晶白云质灰岩、砂屑灰岩 | 嘉陵江组三段(T1j2) | 盐溶角砾岩、灰质白云岩 | 嘉陵江组一段(T1j1) | 微晶灰岩、泥晶灰岩 | 飞仙关组四段(T1f4) | 页岩、泥岩、泥质灰岩 | 飞仙关组三段(T1f3) | 厚层块状砂屑灰岩、微晶灰岩、泥质灰岩 | 飞仙关组二段(T1f2) | 泥岩 | 飞仙关组一段(T1f1) | 钙质泥岩、泥质灰岩 |
|
Stratigraphic lithology in the study area
|
|
Geophysical profile layout and geological sketch in the study area 1—upper Xujiahe formation;2—lower Xujiahe formation;3—Leikoupo formation;4—4th member of Jialingjiang formation;5—3rd member of Jialingjiang formation;6—2nd member of Jialingjiang formation;7—1st member of Jialingjiang formation;8—4th member of Feixianguan formation;9—3rd member of Feixianguan formation;10—2nd member of Feixianguan formation;11—1st member of Feixianguan formation;12—Tianchi;13—measured fault;14—CSAMT section line;15—microgravity section line;16—anticlinal sign;17—karst collapse area;18—Xiema tunnel
|
岩石名称 | 电阻率ρs/(Ω·m) | 密度/(g·cm-3) | 变化范围 | 均值 | 变化范围 | 均值 | 黏土 | 39.2~47.6 | 43.8 | 1.3~1.6 | 1.45 | 溶洞充填物 | 15.3~17 | 16.1 | 1~1.4 | 1.16 | 炭质板岩 | 90~119 | 103 | 1.7~2 | 1.83 | 含炭质泥岩 | 393 ~941 | 585 | 1.4~1.7 | 1.55 | 盐溶角砾岩 | 2 972~4 124 | 3 446 | 2.3~2.7 | 2.5 | 岩屑长石砂岩 | 1 035~1 289 | 1 140 | 2.1~2.4 | 2.31 | 页岩 | 97.6~108.1 | 101 | 2.3~2.8 | 2.54 | 泥岩 | 77~103.1 | 86.8 | 1.7~1.9 | 1.81 | 砂岩 | 99.3~130.9 | 113.6 | 2.2~2.5 | 2.35 | 石英砂岩 | 872~981.3 | 915 | 2.4~2.7 | 2.55 | 灰岩 | 2 026~21 775 | 9 516 | 2.3~2.9 | 2.6 | 泥灰岩 | 750.9~1 070 | 957 | 2.3~2.6 | 2.45 |
|
Statistical table of rock material parameters
|
类型 | 项目 | 参数 | 发射源参数 | 发射源偶极AB距 | 1200 m | 收发距 | 6 000~7000 m | 测量参数 | 采样频率 | 1~8192 Hz | 反演参数 | 最低反演频点 | 32 Hz | 反演初始层厚 | 8.5 m | 反演层厚递增系数 | 1.08 | 反演层数 | 28 |
|
CSAMT measurement and inversion parameters
|
|
CSAMT measurement test section 2D inverted resistivity section and interpretation 1—salt soluble breccia;2—arkose;3—silty mudstone;4—dolomite;5—limestone; 6—mudstone; 7—section direction; 8—presumptive fault; 9—measured faults; 10—estimate stratigraphic boundaries; 11—speculate karst development zone; 12—survey boreholes; 13—ground object labeling
|
|
CSAMT measures PM01 profile 2D inversion resistivity section and deciphering 1—salt soluble breccia; 2—arkose; 3—silty mudstone; 4—dolomite; 5—limestone; 6—mudstone; 7—section direction; 8—strata occurrence; 9—measured faults; 10—presumed fault; 11—estimate stratigraphic boundaries; 12—karst development zone is presumed; 13 —cave; 14—ground object labeling; 15—hydrological observation borehole; 16—survey borehole
|
|
Contour map of bouguer gravity anomaly(a) and residual gravity anomaly(b) 1—gravity anomaly isoline; 2—delineate the scope of karst collapse; 3—bouguer gravity anomaly contour map; 4—residual gravity anomaly contour map extracted by wavelet decomposition; 5—survey boreholes; 6—microgravity survey line and number
|
|
Residual gravity anomalies(a) and 2.5D inversions(b) ρL0=0.8 g/cm3;ρL1=0.8 g/cm3;ρL2-1=1.5 g/cm3;ρL2-2=0.2 g/cm3;ρL3=0.8 g/cm3;ρL4=1.5 g/cm3;ρL5=1.5 g/cm3
|
异常 编号 | 密度/ (g·cm-3) | 体积/m3 | 平面距离/m | 顶界埋深/m | L0 | 0.8 | 640 | 0~10 | 24.7 | L1 | 0.8 | 12000 | 30~70 | 24.4 | L2-1 | 1.5 | 15625 | 110~130 | 23.2 | L2-2 | 0.2 | 48 | 120~126 | 3.6 | L3 | 0.8 | 180 | 165~174 | 8.0 | L4 | 1.5 | 9350 | 203~227 | 18.7 | L5 | 1.5 | 3888 | 235~251 | 18.3 |
|
Two-degree half-inverted circle fixed collapse abnormal body features
|
[1] |
李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983(2):61-64.
|
[1] |
Li D T, Luo Y. Measurement of the distribution area of carbonate rock in China[J]. Chinese Karst, 1983(2):61-64.
|
[2] |
袁道先, 朱德浩, 翁金桃, 等. 中国岩溶学[M]. 北京: 地质出版社, 1993.
|
[2] |
Yuan D X, Zhu D H, Wen J T, et al. Karst science in China[M]. Beijing: Geology Press, 1993.
|
[3] |
蒋忠诚, 裴建国, 夏日元, 等. 我国“十一五”期间的岩溶研究进展与重要活动[J]. 中国岩溶, 2010, 29(4):349-354.
|
[3] |
Jiang Z C, Pei J G, Xia R Y, et al. The progress and important activities of karst research during the 11th five-year plan period in China[J]. Chinese Karst, 2010, 29(4):349-354.
|
[4] |
蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.
|
[4] |
Meng Y, Lei M T. Analysis of the current situation and trend of karst collapse research[J]. Chinese Karst, 2019, 38(3):411-417.
|
[5] |
刘崧. 物探方法在岩溶勘查中的应用综述[J]. 地质科技情报, 1997(2):86-92.
|
[5] |
Liu S. A review of the application of geophysical methods in karst exploration[J]. Geological Scientific Information, 1997(2):86-92.
|
[6] |
胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, 38(3):610-615.
|
[6] |
Hu R Q, Huang J M. The application of comprehensive prospecting method in the investigation of geological disasters of karst subsidence and subsidence in Jinshazhou, Guangzhou[J]. Geophysical Exploration and Geochemical Exploration, 2014, 38(3):610-615.
|
[7] |
岳想平, 彭小珂, 韩埃洋. CSAMT在水文地质勘查中的应用[J]. 地下水, 2020, 42(6):102-105.
|
[7] |
Yue X P, Peng X K, Han A Y. Application of CSAMT in hydrogeological survey[J]. Groundwater, 2020, 42(6):102-105.
|
[8] |
岳想平, 何萌, 彭小珂. CSAMT在探测隐伏断裂构造与岩层划分中的应用[J]. 甘肃地质, 2018, 27(2):93-97.
|
[8] |
Yue X P, He M, Peng X K. The application of CSAMT in detecting the formation of hidden fracture and the division of rock formations[J]. Gansu Geology, 2018, 27(2):93-97.
|
[9] |
贾民育. 微重力测量技术的应用[J]. 地震研究, 2000, 23(4):452-456.
|
[9] |
Jia M Y. Application of microgravity measurement technology[J]. Seismic Research, 2000, 23(4):452-456.
|
[10] |
刘芳, 祝意青, 陈石. 华北时变重力场离散小波多尺度分解[J]. 中国地震, 2013, 29(1):124-131.
|
[10] |
Liu F, Zhu Y Q, Chen S. The discrete wavelets of the variable gravity field in North China are decomposed on a multiscale scale[J]. China Earthquake, 2013, 29(1):124-131.
|
[11] |
杨文采, 施志群, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541,582.
|
[11] |
Yang W C, Shi Z Q, Hou Z Z, et al. Discrete wavelet transformation and gravity anomaly multi-decomposition[J]. Journal of Geophysics, 2001, 44(4):534-541,582.
|
[12] |
杨文采, 郭爱缨, 谢玉清, 等. 重磁异常在频率域的解释方法(上)[J]. 物化探电子计算技术, 1979(1):1-16.
|
[12] |
Yang W C, Guo A Y, Xie Y Q, et al. Method of interpretation of heavy magnetic anomalies in the frequency domain (above)[J]. Physical Exploration Electronic Computing Technology, 1979(1):1-16.
|
[13] |
侯遵泽, 杨文采, 王允, 等. 重力场实数尺度小波分解及其应用[J]. 地球物理学报, 2015, 58(3):1035-1041.
|
[13] |
Hou Z Z, Yang W C, Wang Y, et al. The decomposition and application of real-scale wavelets in gravity field[J]. Journal of Geophysics, 2015, 58(3):1035-1041.
|
[14] |
吴咏敬, 董平, 王良书, 等. 东北地区构造分区与深断裂研究——基于重力场小波多尺度分解[J]. 地球物理学进展, 2012, 27(1):45-57.
|
[14] |
Wu Y J, Dong P, Wang L S, et al. The study of tectonic zoning and deep fracture in Northeast China—Multi-scale decomposition based on small waves of gravitational field[J]. Advances in Geophysics, 2012, 27(1):45-57.
|
[15] |
刁博, 王家林, 程顺有. 重力异常小波多分辨分析分解阶次的确定[J]. 地球科学:中国地质大学学报, 2007(4):564-568.
|
[15] |
Diao B, Wang J L, Chen S Y. Gravitational anomaly wavelet multi-resolution analysis of decomposition order[J]. Earth Science:Journal of China University of Geology, 2007(4):564-568.
|
[16] |
陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.
|
[16] |
Chen Y L, Han K, Chen Y X, et al. Application of controlled source audio geomagnetic method in karst collapse survey[J]. Advances in Geophysics, 2015, 30(6):2616-2622.
|
[17] |
邓中俊, 杨玉波, 姚成林, 等. 综合物探在地面塌陷区探测中的应用[J]. 物探与化探, 2019, 43(2):441-448.
|
[17] |
Deng Z J, Yang Y B, Yao C L, et al. Application of integrated exploration in ground subsidence detection[J]. Geophysical Exploration and Geochemical Exploration, 2019, 43(2):441-448.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui. Analysis and application of the responses of the frequency selection method of telluric electricity field[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1010-1017. |
|
|
|
|