|
|
Technoligical practice of geological mapping method for tropical rain forest areas |
MA Yi-Qi( ), HE Cheng-Zhong( ), JIANG Xin, YANG Chao-Lei |
Kunming Natural Resources Comprehensiv Survey Center of China Geological Survey, Kunming 650000,China |
|
|
Abstract Tropical rain forest areas feature strong chemical weathering, thick weathered layers, developed vegetation, and less exposed bedrock. It is one of the essential geological survey contents of tropical rainforest areas to obtain geological and mineral information of coverage areas by effectively utilizing overburden layers. This paper summarizes the geological and mineral information detection methods employed in exploring the geological and mineral exploration technologies in the tropical rainforest area in the Nanhanzhai experimental area, Mengman town. In detail, the methods were dominated by soil geochemical survey and sampling drill and combined geological route survey. The geological boundaries obtained using these methods roughly coincide with 1∶50,000 geological maps, and three integrated anomalies with certain prospecting prospects were delineated using these methods. This study can serve as a reference for preparing the technical guide to geological mapping methods suitable for tropical rainforest areas.
|
Received: 16 April 2021
Published: 28 June 2022
|
|
Corresponding Authors:
HE Cheng-Zhong
E-mail: m1850731403@163.com;443220880@qq.com
|
|
|
|
28]) ">
|
Regional tectonic(a) and regional tectonic location(b) in the study area(modified according to [28])
|
元素 | 平均值 | 最小值 | 最大值 | 变化系数 | 区域内 水系沉积物 平均值[29] | 相对 富集系数 | 花开左组 平均值 (611件) | 曼来岩组 平均值 (344件) | 花岗岩 平均值 (505件) | Au | 3.93 | 0.32 | 228.00 | 2.82 | 1.34 | 2.92 | 3.79 | 5.76 | 2.85 | Ag | 0.10 | 0.03 | 1.33 | 0.81 | 0.08 | 1.32 | 0.11 | 0.07 | 0.11 | As | 33.39 | 0.90 | 2282.00 | 2.61 | 9.65 | 3.46 | 11.49 | 83.84 | 25.52 | Co | 10.11 | 1.12 | 56.00 | 0.54 | 9.25 | 1.09 | 9.31 | 9.71 | 11.35 | Cr | 55.74 | 5.00 | 138.00 | 0.45 | 61.08 | 0.91 | 57.68 | 58.28 | 51.66 | Hg | 0.07 | 0.01 | 0.55 | 0.52 | 0.06 | 1.26 | 0.08 | 0.08 | 0.07 | Pb | 52.11 | 5.03 | 1332.00 | 1.42 | 27.70 | 1.88 | 59.85 | 21.41 | 63.65 | Sb | 4.07 | 0.18 | 161.00 | 1.97 | 1.27 | 3.20 | 4.31 | 3.01 | 4.46 | Th | 24.55 | 9.43 | 60.20 | 0.41 | 14.42 | 1.70 | 18.51 | 23.19 | 32.77 | U | 5.95 | 1.04 | 39.40 | 0.72 | 2.72 | 2.19 | 3.78 | 3.89 | 9.98 | W | 3.94 | 1.04 | 29.50 | 0.65 | 1.83 | 2.15 | 2.97 | 3.64 | 5.31 | Y | 34.47 | 14.40 | 107.00 | 0.31 | 26.70 | 1.29 | 27.98 | 35.56 | 41.59 | Zn | 48.42 | 11.90 | 163.00 | 0.47 | 48.62 | 0.99 | 46.16 | 37.33 | 58.71 | Mn | 707.70 | 61.20 | 4574.00 | 0.83 | 618.55 | 1.14 | 843.50 | 471.20 | 704.50 | TFe2O3 | 5.12 | 1.25 | 12.11 | 0.30 | 4.23 | 1.21 | 5.04 | 5.35 | 5.06 |
|
Characteristic value of element content in soil B layer in the study area
|
|
Geological-geochemical joint section of line 18 in the study area
|
|
Comparison of the effect of geological mapping in the study area a—1∶200 000 Geological map of the study area; b—1∶50 000 Geological map of the study area
|
Fig.3) a—geological map of the study area;b—F1 factor score map;c—Th geochemical map;d—Y geochemical map;e—U geochemical map;f—W geochemical map ">
|
Geology-geochemical comparison of the study area(the legend is the same as Fig.3) a—geological map of the study area;b—F1 factor score map;c—Th geochemical map;d—Y geochemical map;e—U geochemical map;f—W geochemical map
|
|
Elements cluster analysis diagram of study area
|
Fig.3) a—geological map of the study area; b—F2 factor score map; c—F5 factor score map;d—Au-As-Ag-Pb-Sb-Hg combined anomaly map ">
|
Prospecting effect map of study area(the legend is the same as Fig.3) a—geological map of the study area; b—F2 factor score map; c—F5 factor score map;d—Au-As-Ag-Pb-Sb-Hg combined anomaly map
|
[1] |
胡健民. 特殊地区地质填图工程概况[J]. 地质力学学报, 2016, 22(4):803-808.
|
[1] |
Hu J M. General situation of geological mapping engineering in special area[J]. Journal of Geomechanics, 2016, 22(4): 803-808.
|
[2] |
吴富强, 江振寅, 周硕. 国内外风化壳覆盖区地质调查研究综述[J]. 中国地质调查, 2018, 5(6):41-47.
|
[2] |
Wu F Q, Jiang Z Y, Zhou S. Review of geological survey of the weatwehered crust at home and abroad[J]. Geological Survey of China, 2018, 5(6): 41-47.
|
[3] |
谭春亮, 宋殿兰, 岳永东, 等. 浅层钻探技术在覆盖区填图工作中的应用研究[J]. 矿产勘查, 2018, 9(2):334-340.
|
[3] |
Tan C L, Song D L, Yue Y D, et al. Application of shallow drilling technology togeological mapping in shallow overburden area[J]. Mineral Exploration, 2018, 9(2): 334-340.
|
[4] |
谭春亮, 宋殿兰, 岳永东, 等. 钻探-物探测井技术在覆盖区填图中的应用研究[J]. 探矿工程, 2018, 45(7):44-47.
|
[4] |
Tan C L, Song D L, Yue Y D, et al. Application research on drilling-geophysical logging for geologocal mapping of overburden area[J]. Exploration Engineering, 2018, 45(7): 44-47.
|
[5] |
刘菁华, 王祝文, 田钢, 等. 地面伽马能谱测量在浅覆盖区地质填图中的应用[J]. 地质与勘探, 2003, 39(2):61-64.
|
[5] |
Liu J H, Wang Z W, Tian G, et al. Application of ground gamma-spectrometry in geological apping in shallow overburden areas[J]. Geologyand Prospecting, 2003, 39(2): 61-64.
|
[6] |
刘菁华, 王祝文. 地面综合物探方法在浅覆盖区地质填图单元的划分研究[J]. 中国地质, 2005, 32(1):162-167.
|
[6] |
Liu J H, Wang Z W. Division scheme of the geological mapping units in shallow cover areas based on ground integrated geophysical methods[J]. Geology in China, 2005, 32(1): 162-167.
|
[7] |
赖月荣, 韩磊, 杨树生. 高精度磁测在阿勒泰冰碛物覆盖区地质填图中的应用[J]. 物探与化探, 2014, 38(6):1181-1185.
|
[7] |
Lai Y R, Han L, Yang S S. The effects of applying high precision magneticsurveytogeological mapping in Altay glacial till covering area[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1181-1185.
|
[8] |
尹艳广, 施炜, 公王斌, 等. 地质雷达探测技术在浅覆盖活动构造区填图中的应用——以宁夏青铜峡地区1∶5万新构造与活动构造区填图为例[J]. 地质力学学报, 2017, 23(2):214-223.
|
[8] |
Yin Y G, Shi W, Gong W B, et al. The application of ground penetrating radar technology in geological mapping of shallow covered—Active tectonics region: A case study of 1∶50000 mapping of neotectonic zone and active tectonic zone in Qingtongxia area, Ningxia[J]. Journal of Geomechanics, 2017, 23(2): 214-223.
|
[9] |
赵玉岩, 刘旭洋, 张泽宇, 等. 森林草原浅覆盖区隐伏地质体识别的化探特征因子传递法[J]. 科学技术与工程, 2019, 19(9):22-28.
|
[9] |
Zhao Y Y, Liu X Y, Zhang Z Y, et al. Geochemical exploration characterization factor transfer method for the identification of hidden geological bodiesin shallow coverage area of forest and grassland[J]. Science Technology and Engineering, 2019, 19(9): 22-28.
|
[10] |
刘嵘. 河套盆地覆盖区综合地球物理填图方法技术研究[D]. 西安: 长安大学, 2017.
|
[10] |
Liu R. Study on deep overburden area comprehensive geophysical mapping technique in Hetao Basin[D]. Xi'an: Chang’an University, 2017.
|
[11] |
喻劲松. 浅钻地球化学勘查技术方法及应用研究[J]. 地质学报, 2013, 87(S):236-237.
|
[11] |
Yu J S. Research on the methods and application of shallow drill geochemical exploration[J]. Acta Geologica Sinica, 2013, 87(S): 236-237.
|
[12] |
徐国志, 徐锦鹏, 段玲玲. 化探资料在地质填图中的应用[J]. 物探与化探, 2015, 39(3):450-455.
|
[12] |
Xu G Z, Xu J P, Duan L L. The application of geochemical data in geological mapping[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 450-455.
|
[13] |
白国典, 何凯, 琚根社, 等. 区域化探成果在青海北巴颜喀拉山地区地质填图中的应用物探与化探[J]. 物探与化探, 2018, 42(3):429-435.
|
[13] |
Bai G D, He K, Ju G S, et al. The application of regional geochemical exploration results to the geological mapping of the North Bayan Har Mountains area, Qinghai Province[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 429-435.
|
[14] |
史超, 李书, 任正情, 等. 三维遥感影像在遥感地质构造解译中的应用——以福建平和植被覆盖区为例[J]. 地质找矿论丛, 2016, 31(1):127-134.
|
[14] |
Shi C, Li S, Ren Z Q, et al. The application of 3D remote sensing image to interpretation of geological structure: A case of vegetation covered Pinghe area, Fujian[J]. Contributions to Geology and Mineral Resources Research, 2016, 31(1): 127-134.
|
[15] |
段星星, 刘拓, 董会, 等. 东天山玉海浅覆盖区机动浅钻化探方法技术研究[J]. 西北地质, 2018, 51(3):192-199.
|
[15] |
Duan X X, Liu T, Dong H, et al. Research and application of motorized shallow drilling geochemical exploration in Yuhai shallow overburden area,East Tianshan[J]. Northwester Geology, 2018, 51(3): 192-199.
|
[16] |
王保良. 覆盖区的岩性组合(岩相组合)填图法[J]. 地质通报, 2002, 21(12):890.
|
[16] |
Wang B L. Lithological combination (lithographic combination) mapping method of coverage area[J]. Geological Bulletin of China, 2002, 21(12): 890.
|
[17] |
姚春亮, 夏庆霖, 张晓军, 等. 传统填图法在半覆盖区的改进——第四系岩性填图法[J]. 地球学报, 2017, 38 (4):549-559.
|
[17] |
Yao C L, Xia Q L, Zhang X J, et al. Quaternary petrography-based mapping method: A modified mapping technique for mineral exploration in the partially covered area[J]. Acta Geologica Sinica, 2017, 38(4): 549-559.
|
[18] |
孙凯. 巴里坤盆地地质填图中地球物理信息综合应用研究[D]. 武汉: 中国地质大学(武汉), 2018.
|
[18] |
Sun K. Research on integrated application of geophysical information on geological mapping of Barkol Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2018.
|
[19] |
李向前, 赵增玉, 程瑜, 等. 平原区多层次地质填图方法及成果应用——以江苏港口、泰县、张甸公社、泰兴县、生祠堂镇幅平原区1∶50000填图试点为例[J]. 地质力学学报, 2016, 22(4):822-836.
|
[19] |
Li X Q, Zhao Z Y, Cheng Y, et al. Multi-level geological mapping approaches of the plane area and applications: Acasestudy in 1∶50000 sheets of Gangkou, Taixian, Zhangdiangongshe, Taixingxian and Shengcitangzhen[J]. Journal of Geomechanics, 2016, 22(4): 822-836.
|
[20] |
喻劲松, 荆磊, 王乔林, 等. 特殊地质地貌区填图物化探技术应用[J]. 地质力学学报, 2016, 22(4):893-906.
|
[20] |
Yu J S, Jing L, Wang Q L, et al. Application of geophysical and geochemical prospecting techniques in special geological and geomorphic areas[J]. Journal of Geomechanics, 2016, 22(4): 893-906.
|
[21] |
马海欧, 王立发, 郭松, 等. 滇东地区碳酸盐岩上覆风化层的元素地球化学特征及其成因讨论[J]. 高校地质学报, 2018, 24(2):222-232.
|
[21] |
Ma H O, Wang L F, Guo S, et al. Environmental geochemical characteristics and genesis of the weathering crust of carbonate rocks in eastern Yunnan province[J]. Geological Journal of China Universities, 2018, 24(2): 222-232.
|
[22] |
叶玉林. 滇东高原高磁化率风化壳载磁矿物特征与化学风化程度研究[D]. 昆明: 云南师范大学, 2019.
|
[22] |
Ye Y L. Characteristic and chemical weathering degree of high susceptibility regolith in east Yunnan Plateau[D]. Kuming: Yunnan Normal University, 2019.
|
[23] |
赵思传, 王亚伟, 让昊, 等. 滇中武定地区钛铁砂矿成矿地质条件[J]. 云南地质, 2020, 39(2):260-266.
|
[23] |
Zhao S C, Wang Y W, Ran H, et al. Metallogenic conditions of ilmenite placer in Wuding area, central Yunnan[J]. Yunnan Geology, 2020, 39(2): 260-266.
|
[24] |
吴俊, 卜建军, 谢国刚, 等. 区域化探数据在华南强烈风化区地质填图中的应用[J]. 地质力学学报, 2016, 22 (4):955-966.
|
[24] |
Wu J, Bu J J, Xie G G, et al. Application of regional geochemical data in geological mapping in strongly weathered area in southern China[J]. Journal of Geomechanics, 2016, 22(4): 955-966.
|
[25] |
邓震, 孟贵祥, 汤贺军, 等. 浅覆盖区1∶5万基岩地质填图实践探索——以准噶尔北缘克什克涅绍喀尔(L45E009020)图幅为例[J]. 地球学报, 2019, 40(5):651-660.
|
[25] |
Deng Z, Meng G X, Tang H J, et al. 1∶50 000 bedrock geological mapping in shallow overburden area: A case study of Kashkeneshakar sheet (L45E009020) on the northern Margin of Junggar Basin[J]. Acta Geoscientica Sinica, 2019, 40(5): 651-660.
|
[26] |
贾福东, 张长青, 娄德波, 等. 云南北衙地区矿产地质专题填图方法初探[J]. 地质通报, 2018, 37(2/3):238-253.
|
[26] |
Jia F D, Zhang C Q, Lou D B, et al. Thoughts and methods for mineral geological thematic mapping in Beiyaarea,Yunnan Province[J]. Geological Bulletin of China, 2018, 37(2/3): 238-253.
|
[27] |
Cao M Z X, Zhu W H. Tropical Forests of Xishuangbanna, China[J]. Biotropica, 2006, 38(3): 306-309.
|
[28] |
李钢柱, 苏尚国, 段向东. 三江地区澜沧江带南段半坡杂岩体锆石U-Pb年龄、岩石地球化学特征及板块构造环境[J]. 地学前缘, 2012, 19(4):96-109.
|
[28] |
Li G Z, Su S G, Duan X D. Precise ID-TIMS zircon U-Pb age, whole-rock geochemistry and plate tectonic setting of the Banpo Complex in the southern Lancangjiang arc terrane, Sanjiang area, SW China[J]. Earth Science Frontiers, 2012, 19(4): 096-106.
|
[29] |
武警黄金十支队. 云南幸福展幅、南段幅、曼燕幅1∶5万区域地质矿产调查报告[R]. 2019.
|
[29] |
No. 10 Gold Geological Party of CAPF. Xingfuzhan,Nanduan,Manyan's 1 ∶50,000 regional minerals report in Yunnan Province[R]. 2019.
|
[30] |
武警黄金十支队. 云南幸福展幅、南段幅、曼燕幅1∶5万水系沉积物测量报告[R]. 2019.
|
[30] |
No. 10 Gold Geological Party of CAPF. Xingfuzhan,Nanduan,Manyan's 1 ∶50,000 stream sediment survey report in Yunnan Province[R]. 2019.
|
[31] |
周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6):1097-1106.
|
[31] |
Zhou G H. Recentprogress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106.
|
[32] |
忻海辉, 左莉, 高朝勇. 热带雨林有色金属矿产地球化学勘查方法探索[J]. 云南地质, 2012, 31(2):238-252.
|
[32] |
Xin H H, Zuo L, Gao C Y. The experiment of geochemical exploration method of nonferrous mineral resources in tropical rainforest[J]. Yunnan Geology, 2012, 31(2): 238-252.
|
[33] |
王乔林, 宋云涛, 王成文, 等. 滇西保山—临沧地区土壤元素背景值特征及成因分析[J]. 昆明理工大学学报:自然科学版, 2021, 2(46):37-50.
|
[33] |
Wang Q L, Song Y T, Wang C W, et al. Characteristics and genesis of soil element backgroundBaoshan-Lincang area in western Yunnan province[J]. Journal of Kunming University of Science and Technology:Natural Sciences, 2021, 2(46): 37-50.
|
[34] |
张学敏, 岳琼申. 地球化学方法在化学风化作用和物源判别中的应用综述[J]. 华南地质与矿产, 2018, 34(1):41-58.
|
[34] |
Zhang X M, Yue Q S. Review of the application of element and isotopic geochemistry in chemical weathering and provenance[J]. Geology and Mineral Resources of South China, 2018, 34(1): 41-58.
|
[35] |
严桃桃, 吴轩, 权养科, 等. 从岩石到土壤再到水系沉积物:风化过程的岩性地球化学基因[J]. 现代地质, 2018, 32(3):453-467.
|
[35] |
Yan T T, Wu X, Quan Y K, et al. Heredity,inheritance and similarity of element behaviors among parent rocks and their weathered products: a geochemical lithogene[J]. Geoscience, 2018, 32(3): 453-467.
|
[36] |
严桃桃. 风化过程的岩性地球化学基因[D]. 北京: 中国地质大学(北京), 2018.
|
[36] |
Yan T T. The heredity, inheritance and similarity of element behaviors among parent rock and its weathered products: a geochemical lithogene[D]. Beijing: China University of Geosciences(Beijing), 2018.
|
[37] |
张涛. 岩性地球化学基因的检验——以河北王安镇地区为例[D]. 北京: 中国地质大学(北京), 2020.
|
[37] |
Zhang T. Testing of geochemical lithogene: a case study in Wanganzhen area, Laiyuan county, Hebei Province[D]. Beijing: China University of Geosciences(Beijing), 2020.
|
[38] |
张明涛. 岩性地球化学基因对风化产物的源岩示踪——以豫西熊耳山太山庙地区为例[D]. 北京: 中国地质大学(北京), 2019.
|
[38] |
Zhang M T. Source rock tracing of weathering products by geochemical lithogene—A case study of Taishan Temple area in Xionger mountain, western Henan Province[D]. Beijing: China University of Geosciences(Beijing), 2019.
|
[39] |
赵起超, 迟清华, 王学求, 等. 华南地球化学走廊带碎屑沉积岩W、Sn 时空分布特征及其指示意义[J]. 物探与化探, 2014, 38(2):211-219.
|
[39] |
Zhao Q C, Chi Q H, Wang X Q, et al. Spatial-temporal distribution of W and Sn in clastic sedimentary rocks along a transect across south China and its implications[J]. Geophysical and Geochemical Exploration, 2014, 38(2): 211-219.
|
[1] |
SHI Qi, ZHAO Yan-Peng, CHI Zhan-Dong, GE Hua, KANG Tie-Suo, LI Fa-Xing, WEI Xiang-Yu, LU Jian-Kun, YANG Ren-Yi. Valley system soils geochemical characteristics and metallogenic prediction of the Yue'e tin polymetallic mining area in Xieng Khouang Province, Laos[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 824-834. |
[2] |
LIANG Xin-Qiang, QIAO Zhan-Hua, YAN Qiang, WANG Liang, LI Jian-Feng, LIU Xiao-Hui, WANG Miao. Application of geophysical methods in the exploration of Fuxingtun silver-lead-zinc polymetallic deposit and its metallogenic mechanism[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 323-336. |
|
|
|
|