|
|
Generation mechanism of ghost wave in marine seismic exploration and ghost wave attenuation from marine seismic data |
MA De-Zhi( ), WANG Wei, JIN Ming-Xia, WANG Hai-Kun, ZHANG Ming-Qiang |
China Oilfield Services Co.,Ltd.,Tianjin 300451,China |
|
|
Abstract In marine oil and gas exploration,for the purpose of accurately acquiring the high-precision and high-resolution reflection information of the exploration target and realizing more delicate imaging,broadband acquisition and processing technology of marine seismic has been greatly innovated and developed in recent years.In this paper,the generation mechanism of ghost wave,the classification and characteristics of ghost wave and its manifestation in actual seismic data are studied.The high-resolution radon transform in frequency domain is used as the main processing method to attenuate ghost wave in a broad-band data of a straight slant cable.After the ghost wave suppression processing,the source ghost wave and cable ghost wave of seismic data have been greatly attenuated,and the notch energy has been significantly enhanced.The broadband processing not only broadens the low-frequency component of seismic data,but also broadens the high-frequency component of seismic data;especially,the low-frequency component energy has been significantly enhanced.This method has achieved good results in the application of marine seismic data.
|
Received: 01 November 2020
Published: 25 February 2022
|
|
|
|
|
|
Diagram of seismic wave and ghost wave propagation
|
|
Reflected wave and ghost wave at the seabed of actual seismic data
|
|
Ghost wave time series
|
|
Frequency response curve of ghost wave
|
|
2D wave propagation diagram for slant cable exploration
|
|
Comparison of straight slant cable before and after ghost attenuation a—raw shot;b—receiver ghost attenuation;c—source and receiver ghost attenuation
|
|
Spectrum comparison on shot gather of straight slant cable before and after ghost attenuation
|
|
Stack section comparation of straight slant cable data before and after ghost attenuation a—raw stack;b—receiver ghost attenuation;c—source and receiver ghost attenuation
|
|
Spectrum comparison on stack profile of straight slant cable data before and after ghost attenuation
|
[1] |
陆敬安, 于荣萍, 伍忠良. 海洋地震勘探直达波、鬼波综合效应分析[C]//长春:中国地球物理学会第二十一届年会, 2005:324-324.
|
[1] |
Lu J A, Yu R P, Wu Z L. Comprehensive effect analysis of direct wave and ghost wave in marine seismic exploration[C]//Changchun:The 21st Annual Meeting of Chinese Geophysical Society, 2005:324-324.
|
[2] |
金明霞, 宋鑫, 易淑昌, 等. 海洋地震变深度电缆采集数据的频谱分析及消除鬼波研究[J]. 物探与化探, 2018,42(3):528-536.
|
[2] |
Jin M X, Song X, Yi S C, et al. Spectrum analysis and ghost wave elimination on marin seismic variable depth cable acquisition data[J]. Geophysical and Geochemical Exploration, 2018,42(3):528-536.
|
[3] |
张军华, 张在金, 张彬彬, 等. 地震低频信号对关键处理环节的影响分析[J]. 石油地球物理勘探, 2016,51(1):54-62.
|
[3] |
Zhang J H, Zhang Z J, Zhang B B, et al. Analysis of the influence of low frequency seismic signal on key processing steps[J]. Oil Geophysical Prospecting, 2016,51(1):54-62.
|
[4] |
姜丹, 蒲晓东, 麻志国, 等. 子波法去鬼波在墨西哥湾的应用[J]. 物探与化探, 2017,41(5):914-918.
|
[4] |
Jiang D, Pu X D, Ma Z G, et al. The application of wavelet method to eliminating ghost wave in Gulf of Mexico[J]. Geophysical and Geochemical Exploration, 2017,41(5):914-918.
|
[5] |
陆敬安, 伍忠良, 曾宪军. 海洋地震勘探中地震波、鬼波综合效应分析与应用[J]. 海洋技术, 2006,25(4):76-78,98.
|
[5] |
Lu J A, Wu Z L, Zeng X J. Analysis and application of comprehensive effect of seismic wave and ghost wave in marine seismic exploration[J]. Marine Technology, 2006,25(4):76-78,98.
|
[6] |
顾元, 文鹏飞, 张宝金, 等. 水平缆地震数据的鬼波压制方法及其应用[J]. 地球物理学进展, 2017,32(4):1764-1772.
|
[6] |
Gu Y, Wen P F, Zhang B J, et al. Ghost wave suppression method and its application on horizontal cable seismic data[J]. Progress in Geophysics, 2017,32(4):1764-1772.
|
[7] |
Sonneland L, Berg L E, Eidsvig P, et al. 2-D deghosting using vertical receiver arrays[C]//SEG Technical Program Expanded Abstracts, 1986:516-519.
|
[8] |
Weglein A B, Shaw S A, Matson K H, et al. New approaches to deghosting towed-streamer and ocean-bottom pressure measurements[C]//SEG Technical Program Expanded Abstracts, 2002:2114-2117.
|
[9] |
Soubaras R. Variable-depth streamer:Deep towing and efficient deghosting for extended band-width[R].SEG/ EAGE Research Workshop, 2010.
|
[10] |
Soubaras R, Dowle R. Variable-depth streamer—A broadband marine solution[J]. First Break, 2010,28(12):89-96.
|
[11] |
Soubaras R. Pre-stack deghosting for variable-depth streamer data[C]//SEG Technical Program Expanded Abstracts, 2012:1-5.
|
[12] |
Wang P, Suryadeep R, Can P, et al. Premigration deghosting for marine streamer data using a bootstrap approach in tau-p domain[C]//SEG Technical Program Expanded Abstracts, 2013:4221-4225.
|
[13] |
Bleistein N, Cohen J K, John W S J. Mathematics of multi-dimensional seismic imaging,migration and inversion[M]. New York:Springer Verlag, 1996.
|
[14] |
Weglein A B, Araujo F V, Carvalho P M, et al. Inverse scattering series and seismic exploration[J]. Inverse Problems, 2003,19(6):R27-R83.
|
[15] |
Matson K H. The relationship between scattering theory and the primaries and multiples of reflection seismic data[J]. Seismic Exploration, 1996,5(1):63-78.
|
[16] |
Weglein A B. Multiple attenuation:An overview of recent advances and the road ahead (1999)[J]. The Leading Edge, 1999,18(1):40-44.
|
[17] |
王芳芳, 李景叶, 陈小宏. 基于逆散射级数法的鬼波压制方法[J]. 地球物理学报, 2013,56(5):1628-1636.
|
[17] |
Wang F F, Li J Y, Chen X H, et al. Ghost wave suppression method based on inverse scattering series method[J]. Journal of Geophysics, 2013,56(5):1628-1636.
|
[18] |
Song J G, Gong Y L, Li S. High-resolution frequency-domain Radon transform and variable-depth streamer data deghosting[J]. Applied Geophysics, 2015,12(4):564-572.
|
[19] |
李慧龙, 王征, 宋鑫, 等. 深拖平缆采集资料中鬼波衰减方法探讨[J]. 物探与化探, 2019,43(1):176-182.
|
[19] |
Li H L, Wang Z, Song X, et al. The application of broadband processing technology to deep towing flat streamer data[J]. Geophysical and Geochemical Exploration, 2019,43(1):176-182.
|
[1] |
Wen-Wei ZHANG, Qing-Yun DI, Qi-Li GENG, Da LEI, Zhong-Xin WANG, Jia-Jia MIAO. The removal of MTEM periodic noise based on digital recursive notching[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 278-289. |
[2] |
Ming-Xia JIN, Xin SONG, Shu-Chang YI, Bing ZHANG. The frequency analysis of VDS and its application to deghosting[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 528-536. |
|
|
|
|