|
|
Development of multi-parameter parallel measuring high-density electrical system for urban underground space exploration |
DING Wei-Zhong1,2( ), SUN Fu-Wen1,2, LI Jian-Hua1,2, ZHENG Cai-Jun1,2, LIN Pin-Rong1,2, QI Fang-Shuai1,2( ) |
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China 2. Key Laboratory of Geophysical Electromagnetic Probing Technologies of Ministry of Natural Resources, Langfang 065000, China |
|
|
Abstract On the basis of summing up the advantages and disadvantages of the existing high-density resistivity instruments and combining with the requirements of urban underground space exploration, a set of multi-parameter parallel measuring high-density electrical system is developed. It has the characteristics of transmitting signal at one time, receiving signal by multiple electrodes at the same time, and measuring multiple parameters at the same time. Compared with the traditional high-density electrical instrument, it can effectively improve the working efficiency. the field test shows that the performance of the new electrical system achieves the desired effect. At the end of the article, the paper summarizes the advantages of the new electrical system and showed the suggestions on the development of high-density electrical instrument.
|
Received: 23 November 2020
Published: 21 December 2021
|
|
Corresponding Authors:
QI Fang-Shuai
E-mail: dweizhong@mail.cgs.gov.cn;1305099054@qq.com
|
|
|
|
|
Structure diagram of centralized high density electrical apparatus
|
|
Structure diagram of distributed high density electrical apparatus
|
|
Overall design of multi-parameter parallel measuring high density electrical system
|
|
Overall design of main apparatus
|
|
Multi-parameter parallel measuring high density electrical system
|
深度/m | 电阻率/ (Ω·m) | 岩性 | 0~40 | 47 | 地表砂质松散沉积层 | 40~90 | 13 | 第四系泥质沉积层 | 90~170 | 21 | 第四系含水砂质沉积层 | 170~310 | 15 | 第四系泥质沉积层 |
|
Resistivity characteristics of test area
|
|
The curve of field work data
|
|
Exploration results of test section
|
[1] |
赵镨, 姜杰, 王秀荣. 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 2017, 29(9):62-66,73.
|
[1] |
Zhao P, Jiang J, Wang X R. Urban underground space exploration key technologies and development trend[J]. Coal Geology of China, 2017, 29(9):62-66,73.
|
[2] |
严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.
|
[2] |
Yan J Y, Meng G X, Lyu Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.
|
[3] |
周杨. 高密度电阻率法测深原理及应用实例[M]. 郑州: 黄河水利出版社, 2012.
|
[3] |
Zhou Y. Principle and application of high density resistivity sounding [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2012.
|
[4] |
曹煜, 刘盛东, 唐润秋, 等. 电法并行采集AM排列推导ABM排列技术研究[J]. 物探与化探, 2016, 40(6):1157-1165.
|
[4] |
Cao Y, Liu S D, Tang R Q, et al. Research on the derivation of ABM array for parallel acquisition of AM array technique[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1157-1165.
|
[5] |
许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.
|
[5] |
Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumulation in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.
|
[6] |
刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1):215-219.
|
[6] |
Liu D H, Luo S X, Chen C J. The application of high density resistivity method to the monitoring of tailings dam[J]. Geophysical and Geochemical Exploration, 2020, 44(1):215-219.
|
[7] |
王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5):1157-1162.
|
[7] |
Wang Z J. The application of electrical method to tracking underground river of reservoir dam area[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1157-1162.
|
[8] |
熊华山, 柏长卫, 王赐鸿. 高密度电阻率法中负电位差的产生原因及其可利用性[J]. 物探与化探, 2016, 40(1):83-87.
|
[8] |
Xiong H S, Bai C W, Wang C H. The reason for the generation of negative potential difference in high-density electrical method and its utility[J]. Geophysical and Geochemical Exploration, 2016, 40(1):83-87.
|
[9] |
丁卫忠, 王文国. 相位激电法在牛家营银铅锌多金属矿的找矿勘查实践[J]. 现代矿业, 2017, 573(1):14-18.
|
[9] |
Ding W Z, Wang W G. Application of Phase Induced polarization method in the prospecting and exploration of Niujiaying Ag-Pb-Zn Polymetallic Deposit[J]. Modern Mining, 2017, 573(1):14-18.
|
[10] |
沈鸿雁. 高密度电法勘探方法与技术[M]. 北京: 地质出版社, 2012.
|
[10] |
Shen H Y. High density electrical exploration method and technology [M]. Beijing: Geological Publishing House, 2012.
|
[11] |
李志武. 高密度电法仪器的发展[J]. 地质装备, 2013, 14(5):25-29.
|
[11] |
Li Z W. Development of high density electrical apparatus[J]. Equipment for Geotechnical Engineering, 2013, 14(5):25-29.
|
[12] |
孙夫文, 郑采君, 刘昕卓, 等. 基于FPGA串口波特率自适应功能的设计与实现[J]. 电子设计工程, 2019, 27(9):69-73.
|
[12] |
Sun F W, Zheng C J, Liu X Z, et al. Design and implementation of serial port baud rate adaptive function based on FPGA[J]. Electronic Design Engineering, 2019, 27(9):69-73.
|
[13] |
孙夫文, 郑采君, 刘昕卓, 等. 基于STM32同步信号传输延时校正模块设计与实现[J]. 电子设计工程, 2019, 27(16):170-174,179.
|
[13] |
Sun F W, Zheng C J, Liu X Z, et al. Design and implementation of delay correction module for synchronous signal transmission based on STM32[J]. Electronic Design Engineering, 2019, 27(16):170-174,179.
|
[14] |
Wang J L, Lin P R, Wang M, et al. A multiple parameter extraction and electromagnetic coupling correction technique for time domain induced polarization full waveform data[J]. Exploration Geophysics, 2019, 50(2), 113-123.
|
[15] |
李建华, 林品荣, 何畏, 等. 基于全波形采样的激电多信息提取方法研究与应用[J]. 地球物理学进展, 2020, 35(1):132-138.
|
[15] |
Li J H, Lin P R, He W, et al. Study and application on induced polarization multi-parameter information extraction method based on the full waveform sampling technology[J]. Progress in Geophysics, 2020, 35(1):132-138.
|
[16] |
丁卫忠, 王文国, 孙诚业, 等. 激电法接收机的处理方法和系统[P]. sourceZL201710478267. 5.
|
[16] |
Ding W Z, Wang W G, Sun C Y, et al. Processing method and system of IP receiver[P]. ZL201710478267. 5.
|
[17] |
刘东明, 冯杰, 贾定宇, 等. 雄安新区地热及工程孔综合测井2019年度进展报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2019.
|
[17] |
Liu D M, Feng J, Jia D Y, et al. 2019 annual progress report of geothermal and engineering borehole comprehensive logging in xiong’an New Area[R]. Institute of Geophysical and Geochemical Exploration,Chianese Academy of Geological Science, 2019.
|
[1] |
WANG Fei-Fei, CHEN Ru-Jun, LI Sheng-Jie, SHEN Rui-Jie, YIN Hao, LIU Feng-Hai, PENG Xin. Development of the acquisition system of a broadband spectral induced polarization testers for rock and ore samples[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1454-1462. |
[2] |
YONG Fan, LIU Zi-Long, JIANG Zheng-Zhong, LUO Shui-Yu, LIU Jian-Sheng. The key technology of shallow imaging in urban 3D seismic data processing[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1266-1274. |
|
|
|
|