|
|
Joint application of surface nuclear magnetic resonance and high-density resistivity method in the exploration of potassium ore in salt lake brine in Tibet |
HE Sheng1,2,3,4( ), MA Wen-Xin3,4, GAN Bin1,2 |
1. Qinghai Bureau of Environmental Geological Exploration, Xining 810008,China 2. Qinghai Provincial Key Laboratory of Environment and Geology, Xining 810008,China 3. Qinghai 906 Engineering Survey and Design Institute, Xining 810008,China 4. Qinghai Institute of Geology and Environment, Xining 810008,China |
|
|
Abstract Surface nuclear magnetic resonance (SNMR) can be used to directly find groundwater (brine), and the high-density resistivity method is suitable to distinguish brine from fresh water. This study introduces the joint exploration using the above two geophysical methods in two major salt lake study areas in Tibet-Chagcam Caka and Chalico salt lakes, in order to make full use of the advantages of the two methods while avoiding the limitations and one sidedness of a single method. As a result, the distribution of underground brine in the two salt lakes was identified, thus providing a basis for the overall layout of the exploration and development of potassium ore in brine in the two salt lakes. Furthermore, the joint exploration results of the two geophysical methods were highly consistent with the geological survey results of shallow wells. It can be concluded that the joint application of the above two geophysical methods in Tibet serves as an efficient and accurate exploration mode for the exploration of underground brine.
|
Received: 04 January 2021
Published: 21 December 2021
|
|
|
|
|
|
The relationship between resistivity of various solutions and their mineralization degree (according to B.H. Dakhonov)
|
|
The working principle of SNMR water
|
|
Schematic view of electrode arramgement in high-density electrical method
|
|
Working layout of Zhacangchaka salt lake
|
|
Working layout of Chalicuo salt lake
|
|
Comprehensive result map of electrical resistvity imaging 1 Section
|
|
Comprehensive result map of SNMR site 1
|
|
Comprehensive result map of electrical resistvity imaging 2 Section
|
|
Comprehensive result map of SNMR site 2
|
盐湖 | 浅井编号 | 岩性 | 结果 | 扎仓茶卡盐湖 | ZK01 | 0~1.35 m,砂砾层;1.35~2.13 m,硼砂、芒硝层;2.13~5.32 m,淤泥、粉砂层 | 晶间卤水:KCl,27 799 mg/L; LiCl,3 583 mg/L;B2O3,2 193 mg/L | ZK02 | 0~1.5 m,人工堆积含硼镁石砂层;1.5~1.95 m,黏土质砂层;1.95~2.18 m,淤泥层 | 未达到边界品位 | 茶里错盐湖 | CK01 | 0~0.21 m,含盐类亚砂土层;0.21~1.23 m,砂质黏土与腐殖土互层;1.23~2.02 m,淤泥层、冻土层;2.02~6.37 m,亚砂土 | 未达到边界品位 | CK02 | 0~0.18 m,含盐类亚砂土层;0.18~1.65 m,砂质黏土与腐殖土互层;1.65~2.24 m,淤泥层、冻土层;2.24~5.26 m,亚砂土 | 未达到边界品位 | CK03 | 0~1.45 m,砾砂层 | 未达到边界品位 | CK04 | 0~0.97 m,淤泥质粉砂层;0.97~1.55 m,淤泥层 | 未达到边界品位 | CK05 | 0~0.35 m,含盐类砂质黏土;0.35~2.70 m,砂质黏土与腐殖土互层 | 未达到边界品位 |
|
Statistical table of geological shallow well data in study area
|
[1] |
李武, 董亚萍. 西藏盐湖卤水成盐过程自然能的应用[J]. 科技导报, 2017, 35(12):39-43.
|
[1] |
Li W, Dong Y P. Application of natural energy in salt precipitation from Tibetan salt lakes[J]. Science & Technology Review, 2017, 35(12):39-43.
|
[2] |
刘喜方, 郑绵平. 西藏盐湖的钾盐资源[J]. 科技导报, 2017, 35(12):62-66.
|
[2] |
Liu X F, Zheng M P. Saline lake potash resources in Tibet[J]. Science & Technology Review, 2017, 35(12):62-66.
|
[3] |
焦鹏程, 张建伟, 姚佛军, 等. 马海盐湖深部卤水钾盐勘查与研究进展[J]. 矿床地质, 2016, 35(6):1305-1308.
|
[3] |
Jiao P C, Zhang J W, Yao F J, et al. Exploration and research progress of potash in deep brine of Mahai salt Lake[J]. Mineral Deposits, 2016, 35(6):1305-1308.
|
[4] |
黄华, 刘成林, 张士万, 等. 深层富钾卤水的地球物理探测技术及应用——以江陵凹陷为例[J]. 矿床地质, 2014, 33(5):1101-1107.
|
[4] |
Huang H, Liu C L, Zhang S W, et al. Application of geophysical detection method to exploration of deep potassium-rich brine formation: A case study of Jiangling Depression[J]. Mineral Deposits, 2014, 33(5):1101-1107.
|
[5] |
潘剑伟, 占嘉诚, 洪涛, 等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报, 2018, 37(3):253-262.
|
[5] |
Pan J W, Zhan J C, Hong T, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 37(3):253-262.
|
[6] |
李宏恩, 徐海峰, 李铮, 等. 地面核磁共振法与高密度电法联合探测堤坝渗漏隐患原位试验研究[J]. 地球物理学进展, 2019, 34(4):1627-1634.
|
[6] |
Li H E, Xu H F, Li Z, et al. In situ expermental study on resistivity-magnetic resonance sounding coupling imaging diagnosis method for an embankment dam with seepage defects[J]. Progress in Geophysics, 2019, 34(4):1627-1634.
|
[7] |
高敬语, 谭嘉言, 朱占升, 等. 音频大地电磁法在地下水质评价中的应用[J]. 物探与化探, 2013, 37(5):895-898.
|
[7] |
Gao J Y, Tan J Y, Zhu Z S, et al. The appication of the audio magnetotelluric method to the assessment of underground water quality[J]. Geophysical and Geochemical Exploration, 2013, 37(5):895-898.
|
[8] |
陈松, 刘磊, 刘怀庆, 等. 北部湾咸淡水分界面划分中的电法应用分析[J]. 地球物理学进展, 2019, 34(4):1592-1599.
|
[8] |
Chen S, Liu L, Liu H Q, et al. Application analysis of electrical method in dividing saltwater and freshwater interface in Beibu bay[J]. Progress in Geophysics, 2019, 34(4):1592-1599.
|
[9] |
龙作元, 何胜. 核磁共振测深方法在多年冻土区找水中的应用[J]. 物探与化探, 2015, 39(2):288-291.
|
[9] |
Long Z Y, He S. Application of nuclear magnetic resonance sounding method in finding water in permafrost regions[J]. Geophysical and Geochemical Exploration, 2015, 39(2):288-291.
|
[10] |
刘军. 地面核磁共振与瞬变电磁联合探测技术在矿区老空水探测中的应用[J]. 建井技术, 2016, 37(6):16-18.
|
[10] |
Liu J. Surface ground nuclear magnetic resonance and transient electromagnetic combined detection technology applied to detection of water in goaf of mining area[J]. Mine Construction Technology, 2016, 37(6):16-18.
|
[11] |
何胜, 蒋厚辉, 苌有全, 等. 核磁共振测深方法在盐湖区卤水钾矿勘查中的应用[J]. 地球物理学进展, 2015, 30(1):332-338.
|
[11] |
He S, Jiang H H, Chang Y Q, et al. Application of MRS method in exploration brine potassium ore in saline lake district[J]. Progress in Geophysics, 2015, 30(1):332-338.
|
[12] |
王瑞丰, 温来福, 程久龙, 等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 2020, 42(6):784-790.
|
[12] |
Wang R F, Wen L F, Cheng J L, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chende Area of Hebei China[J]. Journal of Earth Sciences and Environment, 2020, 42(6):784-790.
|
[13] |
许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.
|
[13] |
Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumula-tion in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.
|
[1] |
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717. |
[2] |
SU Yong-Jun, CAO Zhan-Ning, ZHAO Geng-Xin, HU Xiang-Yun, FAN Jian, ZHANG Jing, FAN Cui-Song, HUANG Zhong-Feng. Application of the high-density resistivity method in detailed exploration of superficial paleochannels in Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 272-278. |
|
|
|
|