|
|
CSAMT and AMT data "splicing" processing: A case study of No.7 profile of the Renli niobium tantalum deposit in Hunan Province |
LIU Jun-Feng1( ), CHEN Yun-Tao1( ), DENG Zhi-Qiang1, ZHOU Fang-Chun2, CAO Chuang-Hua3, LIU Xiang4, ZENG Mei-Qiang2, LI Jie5, HUANG Zhi-Biao2, CHEN Hu2 |
1. Hunan Nuclear Geology Institute,Changsha 410011,China 2. No.311 Geological Party of Hunan Nuclear Geology, Changsha 410100,China 3. Hunan Institute of Geological Survey, Changsha 410011,China 4. Hunan Eco-enviromnenal Affairs Center, Changsha 410014,China 5. Geological Bureau of Hunan Province, Changsha 410014,China |
|
|
Abstract Generally, audio frequency magnetotelluric sounding (AMT) and controlled source audio frequency magnetotelluric sounding (CSAMT) are used for deep exploration. The AMT method has a relatively wide acquisition frequency band, but is affected by weak signals in certain frequency bands of the natural field, which is called "dead band". In the "dead band" range, the geological body response cannot be obtained completely. However, CSAMT has the characteristics of high signal-to-noise ratio due to the introduction of artificial source; therefore, due to the limitation of transmitting power, the distance between transmitting and receiving is generally not far enough, so it is easy to enter the "near area" prematurely. This paper proposes a processing method that combines the two methods of data splicing. Firstly, on the basis of previous theoretical research, the forward calculation is carried out by using CSAMT and AMT uniform half space model, and the results show that the combination of CSAMT and AMT data is feasible. Secondly, the field measured data of No. 7 geological section of the Renli niobium and tantalum deposit in Hunan Province are tested by using the CSAMT far area data and the AMT data at the same measuring point with the same mode to "splice". Finally, the new AMT data derived from synthesization are used. The results show that the inversion results and the drilling results correspond well, which proves that the method has good promotion significance.
|
Received: 21 April 2020
Published: 01 March 2021
|
|
Corresponding Authors:
CHEN Yun-Tao
E-mail: bgmaster@163.com;674395052@qq.com
|
|
|
|
[1] |
Jones A C, Carcia X. Okak Bay AMT data-set case study: Lessons in dimensionality and scale[J]. Ueophysics, 2003,68(1):70-91.
|
[2] |
Ritter S S. High Ireyuency MT date understanding "dead band" between 1 and 4 kHz[C]// 22nd EM Induction Workshop.Weimar,Uermany, 2014.
|
[3] |
Müller A. A new method to compensate for bias in magnetotellurics[J]. Geophysical Journal International, 2000,142(1):257-269.
|
[4] |
Gamble T, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979,44(1):53-68.
|
[5] |
杨生, 张少云. MT法中利用阻抗相位资料对畸变视电阻率曲线的校正[J]. 地质与勘探, 2001,37(6):42-45.
|
[5] |
Yang S, Zhang S Y. Correction of distorted apparent resistivity curve using impedance phase data in MT method[J]. Geology and exploration, 2001,37(6):42-45.
|
[6] |
仇根根, 钟清, 刘君平, 等. 大地电磁测深视电阻率和相位曲线之间近似互算方法及程序实现[J]. 物探化探计算技术, 2012,34(4):402-405.
|
[6] |
Qiu G G, Zhong Q, Liu J P, et al. Approximate mutual calculation method and program realization between apparent resistivity and phase curve in magnetotelluric sounding[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2012,34(4):402-405.
|
[7] |
Garcia X, Jones A G. Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform[J]. Geophysics, 2008,73(6):223-234.
|
[8] |
李红领, 王光杰, 杨磊, 等. 基于蒙古东戈壁AMT数据的“死频带”分析[J]. 地球物理学进展, 2015,34(6):1188-1198.
|
[8] |
Li H L, Wang G J, Yang L, et al. Dead band analysis based on Mongolian east gobi AMT data[J]. Progress in Geophysics, 2015,34(6):1188-1198.
|
[9] |
李凤哲, 李伟, 朱庆俊. 咸淡水共存区物探资料处理技术[J]. 物探与化探, 2011,35(5):692-695.
|
[9] |
Liu F Z, Li W, Zhu Q J. A discussion on data processing for geophysical exploration in the salt-fresh water concomitant area[J]. Geophysical and Geochemical Exploration, 2011,35(5):692-695.
|
[10] |
谭捍东, 魏文博. 大地电磁标定曲线的畸变及校正[J]. 现代地质, 1998,12(4):603-606.
|
[10] |
Tan H D, Wei W B. Distortion of magnetotelluric calibration curve and its correction[J]. Geoscience, 1998,12(4):603-606.
|
[11] |
汤井田, 周聪. AMT“死频带”数据频域特征与Rhoplus校正[C]// 第七届世界华人地质科学研讨会摘要集, 2013: 226-227.
|
[11] |
Tang J T, Zhou C. Frequency domain characteristics of AMT “dead band” data and rhoplus correction[C]// Abstracts of the 7th World Symposium on Chinese Geological Sciences, 2013: 226-227.
|
[12] |
周聪, 汤井田, 任政勇, 等. 音频大地电磁法“死频带”畸变数据的Rhoplus校正[J]. 地球物理学报, 2015,58(12):4668-4660.
|
[12] |
Zhou C, Tang J T, Ren Z Y, et al. Rhoplus correction of “dead band” distortion data of audio frequency magnetotelluric method[J]. Chinese Journal of Geophysics, 2015,58(12):4668-4660.
|
[13] |
谭洁. Rhoplus理论及AMT死频带校正[D]. 长沙:中南大学, 2014.
|
[13] |
Tan J. The theory of Rhoplus and correction of dead band data[D]. Changsha: Central South University, 2014.
|
[14] |
Garcia X, Jones A G. A new methodology for the acquisition and processing of audio-magnetotelluric (AMT) data in the AMT dead band[J]. Geophysics, 2005,70(5):119-126.
|
[15] |
乔宝强, 程纪星, 刘祜. AMT野外最佳观测时间及人工源信号作用的探讨[J]. 铀矿地质, 2014,30(3):180-186.
|
[15] |
Qiao B Q, Cheng J X, Liu H. Discussion on the best acquisition season of AMT and man-made signals function in the field[J]. Uranium Geology, 2014,30(3):180-186.
|
[16] |
王若, 王妙月. 可控源音频大地电磁数据的反演方法[J]. 地球物理学进展, 2003,18(2):197-202.
|
[16] |
Wang R, Wang M Y. Inversion method of controlled source audio-frequency magnetotelluric data[J]. Progress in Geophysics, 2003,18(2):197-202.
|
[17] |
栾晓东, 底青云, 雷达. 基于牛顿迭代法和遗传算法的CSAMT近场校正[J]. 地球物理学报, 2018,61(10):4148-4159.
|
[17] |
Luan X D, Di Q Y, Lei D. Near-field correction of CSAMT data based on Newton iteration method and GA method[J]. Chinese Journal of Geophysics, 2018,61(10):4148-4159.
|
[18] |
邓居智, 郑燕青, 陈辉, 等. 多种频率域电磁法在冷水坑矿集区的应用效果对比[J]. 地球物理学进展, 2016,31(6):166-176.
|
[18] |
Deng J Z, Zheng Y Q, Chen H, et al. Comparison of application effects of multiple frequency domain electromagnetic methods in Lengshuikeng ore concentration area[J]. Progress in Geophysics, 2016,31(6):166-176
|
[19] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[19] |
Tang J T, He J S. Methods and applications of CSAMT[M]. Changsha: Central South University Press, 2005.
|
[20] |
汤井田, 周聪, 肖晓. 复杂介质条件下CSAMT 最小发收距的选择[J]. 有色金属学报, 2013,23(6):1681-1693.
|
[20] |
Tang J T, Zhou C, Xiao X. Selection of minimum transmit-receive distance of CSAMT on complicated media[J]. The Chinese Journal of Nonferrous Metals, 2013,23(6):1681-1693.
|
[21] |
刘俊峰, 邓居智, 陈辉. 基于AMT数据构建地电模型的CSAMT最小收发距估算[J]. 地球物理学进展, 2016,31(6):2593-2597.
|
[21] |
Liu J F, Deng J Z, Chen H, et al. Calculation of minimum separation between receiver and transmitter of CSAMT based on 1D model structured by AMT date[J]. Progress in Geophysics, 2016,31(6):2593-2597.
|
[22] |
曹创华, 邓专, 柳建新. 长株潭地区CSAMT法收发距探讨及实例分析[J]. 中国有色金属学报, 2017,27(2):345-355.
|
[22] |
Cao C H, Deng Z, Liu J X. Case study and analysis on distance between transmitter and receiver of CSAMT method in Changzhutan area,China[J]. The Chinese Journal of Nonferrous Metals, 2017,27(2):345-355.
|
[23] |
刘翔, 周芳春, 黄志飚, 等. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2018,38(2):161-166.
|
[23] |
Liu X, Zhou F C, Huang Z B, et al. Discovery of Renli superlarge pegmatite-type Nb-Ta polymetallic deposit in Pingjiang,Hunan province and its significances[J]. Geotectonica et Metallogenia, 2016,38(2):161-166.
|
[24] |
周芳春, 李建康, 刘翔, 等. 湖南仁里铌钽矿床矿体地球化学特征及其地质意义[J]. 地质学报, 2019,93(6):1392-1404.
|
[24] |
Zhou F C, Li J K, Liu X, et al. Geochemical characteristics and genetic significance of ore bodies in Renli Nb-Ta deposit,Hunan province[J]. Acta Geologica Sinica, 2019,93(6):1392-1404.
|
[25] |
束正祥, 张德贤, 鲁安怀, 等. 湘东北幕阜山岩体地质地球化学特征及其找矿指示意义[J]. 矿物学报, 2015,35(S1):240.
|
[25] |
Shu Z X, Zhang D X, Lu A H, et al. Geological and geochemical characteristics of Mufushan pluton in Northern Hunan province and its prospecting significance[J]. Acta mineralogica Sinica, 2015,35(S1):240.
|
[26] |
周芳春, 刘翔, 李建康, 等. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J]. 大地构造与成矿学, 2019,43(1):77-166.
|
[26] |
Zhou F C, Liu X, Li J K, et al. Metallogenic characteristics and prospecting direction of Renli super large rare metal deposit in Hunan Province,China[J]. Geotectonica et Metallogenia, 2019,43(1):77-166.
|
[27] |
刘翔, 周芳春, 李鹏, 等. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义[J]. 矿床地质, 2019,38(4):771-791.
|
[27] |
Liu X, Zhou F C, Li P, et al. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance[J]. Mineral Deposits, 2019,38(4):771-791.
|
[28] |
崔志强, 胥值礼, 孟庆敏. 高精度航空物探在幕阜山地区地质构造研究中的应用[J]. 华南地质与矿产, 2015,31(4):391-397.
|
[28] |
Cui Z Q, Xu Z L, Meng Q M. The application of high precision airborne geophysical research in Mufu moutian area[J]. Geology and Mineral Resources of South China, 2015,31(4):391-397.
|
[29] |
崔志强, 胥值礼, 孟庆敏. 幕阜山及邻区地质构造及岩浆岩之航空地球物理特征[J]. 物探化探计算技术, 2016,38(2):161-166.
|
[29] |
Cui Z Q, Xu Z L, Meng Q M. Aerogeophyscial feature of the geological tectonic and magmatic rocks in the mufu-mountain area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016,38(2):161-166.
|
[30] |
李鹏, 刘翔, 李建康, 等. 湘东北仁里—传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代[J]. 地质学报, 2019,93(6):1374-1391.
|
[30] |
Li P, Liu X, Li J K, et al. Petrographic and geochemical characteristics of Renli-Chuanziyuan No.5 pegmatite,NE Hunan,and its metallogenic age[J]. Acta Geologica Sinica, 2019,93(6):1374-1391.
|
[31] |
李鹏, 李建康, 裴荣富, 等. 幕阜山复式花岗岩体多期次演化与白至纪稀有金属成矿高峰:年代学依据[J]. 地球科学, 2017,42(10):1684-1696.
|
[31] |
Li P, Li J K, Pei R F, et al. Multistage magmatic evolution and cretaceous peak metallogenic epochs of Mufushan composite granite Mass:Constrains from geochronological evidence[J]. Earth Science, 2017,42(10):1684-1696.
|
[32] |
周芳春, 黄志毗, 刘翔, 等. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 大地构造与成矿学, 2020,44(3):476-485.
|
[32] |
Zhou F C, Huang Z B, Liu X, et al. Re-Os dating of molybdenite from the Renli Nb-Ta deposit,Hunan province,and its geological significance[J]. Geotectonica and Metallogenia, 2020,44(3):476-485.
|
[33] |
李乐广, 王连训, 田洋, 等. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义[J]. 地球科学, 2019,44(7):611-618.
|
[33] |
Li L G, Wang L X, Tian Y, et al. Petrogenesis and rare-metal mineralization of the Mufushan granitic pegmatite,South China: Insights from in situ mineral analysis[J]. Earth Science, 2019,44(7):611-618.
|
[34] |
湖南省地质调查院. 湖南省区域地质志[M]. 北京: 地质出版社, 2012: 850-852.
|
[34] |
Hunan Institute of Geological Survey. Regional geological records of Hunan Province [M]. Beijing: Geological Publishing House, 2012: 850-852.
|
[35] |
刘丽君, 付小方, 王登红, 等. 甲基卡式稀有金属矿床的地质特征与成矿规律[J]. 地质与矿产, 2015,34(6):1188-1198.
|
[35] |
Liu L J, Fu X F, Wang D H, et al. Geological characteristics and metallogeny of Jiajika-tyle rare metal deposits[J]. Mineral Deposits, 2015,34(6):1188-1198.
|
[36] |
杨荣, 郝雪峰, 王登红, 等. 四川甲基卡锂矿田伟晶岩脉的地球物理探测效果——以新三号脉(X03)为例[J]. 矿床地质, 2020,39(1):111-125.
|
[36] |
Yang R, Hao X F, Wang D H, et al. Effect of geophysical exploration on the pegmatite vein in Jiajika lithium orefield,Sichuan province: A case study of X03 vein[J]. Mineral Deposits, 2020,39(1):111-125.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
|
|
|
|