|
|
|
| Geochemical characteristics and utilization prospects of Zn in farmland soils, Jiangsu Province |
WANG Zi-Yi1,2( ), LIAO Qi-Lin1,2, WANG Yuan-Yuan1,2( ), CUI Xiao-Dan1,2, LIU Wei-Jing1,2, XU Hong-Ting1,2, LI Wen-Ting1,2 |
| Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources; Geological Survey of Jiangsu Province, Nanjing 210018, China |
|
|
|
|
Abstract Based on the geochemical data of farmland soils in Jiangsu Province, obtained from regional eco-geochemical surveys and the geochemical assessment of land quality in past years, this study delved into the geochemical characteristics of Zn in soils, aiming to explore the prospects of producing natural zinc-rich food in Zn-rich soils. The results indicate that Zn in farmland soils in Jiangsu Province exhibited an uneven distribution, with an average Zn content of approximately 70 mg/kg. The available Zn accounted for about 20% of the total Zn in soils. The total Zn in soils dictated the distribution of available Zn, with a significant positive correlation between both. Significant factors influencing the enrichment and distribution of Zn in soils included soil texture, genetic type, total organic carbon (TOC) content, and Fe content. Among various soils, limestone soils were the most enriched in Zn in Jiangsu Province, while the Holocene marine silty soils served as soil parent materials most enriched in Zn. Zn in soils manifested (relatively) significant positive correlations with Se, Cu, Fe, Al, Mo, and TOC contents. Rice seeds showed an average Zn content of 18 mg/kg, with an average bio-concentration factor (BCF) value of 0.2. Zn in rice seeds was significantly positively correlated with Zn, Se, and TOC content in soils but significantly negatively correlated with soil pH. In contrast, wheat seeds showed an average Zn content of 28 mg/kg, with an average BCF value of 0.36. Zn in wheat seeds was significantly positively correlated with Zn, Se, B, and TOC content in soils. Additionally, a significant positive correlation between Zn and Se was observed in both rice and wheat seeds. According to the industrial standards, the proportions of zinc-rich soils, zinc-rich rice seeds, and zinc-rich wheat seeds in Jiangsu Province were 11.39%, 29%, and 13.69% respectively, suggesting promising prospects for the development and utilization of zinc-rich soil resources in Jiangsu Province. The development and utilization efficiency of zinc-rich soil resources can be significantly enhanced by combining the production of natural zinc-rich food and the amelioration of farmland soils (e.g., improving TOC content and pH in soils). Overall, the results of this study provide a basis for scientifically utilizing beneficial trace elements such as Zn in soils in Jiangsu Province.
|
|
Received: 26 December 2024
Published: 30 December 2025
|
|
|
|
Corresponding Authors:
WANG Yuan-Yuan
E-mail: 276685913@qq.com;313217280@qq.com
|
|
|
|
|
Geochemical distribution of zinc in farmland soils of Jiangsu province
|
| 产地 | 样品数n | w(Zn)/(mg·kg-1) | 标准离差 | CV | pH | | Xmin | Xmax | $\overline{X}$ | Xmin | Xmax | $\overline{X}$ | | 全省 | 23905 | 18.3 | 1021 | 72.4 | 24.9 | 0.34 | 4.22 | 9.22 | 7.76 | | 南京市 | 1591 | 34.6 | 823 | 75.8 | 34.73 | 0.46 | 4.38 | 8.29 | 6.31 | | 无锡市 | 989 | 34.0 | 624 | 78.7 | 28.21 | 0.36 | 4.44 | 8.12 | 6.26 | | 徐州市 | 2823 | 21.2 | 262 | 64.3 | 16.45 | 0.26 | 4.95 | 9.01 | 8.12 | | 常州市 | 1013 | 37.4 | 225 | 68.5 | 19.68 | 0.29 | 4.37 | 8.16 | 6.35 | | 苏州市 | 1665 | 42.2 | 328 | 92.1 | 23.9 | 0.26 | 4.26 | 9.92 | 6.39 | | 南通市 | 2154 | 47.6 | 143 | 73.6 | 11.13 | 0.15 | 5.42 | 8.75 | 8.03 | | 连云港市 | 1869 | 18.3 | 1021 | 76.4 | 43.44 | 0.57 | 4.22 | 9.10 | 7.74 | | 淮安市 | 2266 | 35.6 | 604 | 67.0 | 19.19 | 0.29 | 4.97 | 8.56 | 7.79 | | 盐城市 | 3725 | 33.0 | 678 | 69.2 | 16.31 | 0.24 | 5.30 | 9.22 | 8.08 | | 扬州市 | 1536 | 46.7 | 632 | 76.1 | 25.50 | 0.33 | 5.22 | 8.34 | 7.34 | | 镇江市 | 931 | 43.6 | 604 | 79.2 | 37.45 | 0.47 | 4.83 | 8.23 | 6.66 | | 泰州市 | 1423 | 47.3 | 208 | 73.5 | 14.29 | 0.19 | 4.80 | 8.44 | 7.62 | | 宿迁市 | 1920 | 27.3 | 117 | 63.2 | 15.83 | 0.25 | 5.03 | 8.62 | 7.97 | | 沿海滩涂 | 1199 | 35.5 | 103 | 50.9 | 10.53 | 0.21 | 7.94 | 9.20 | 8.67 |
|
Statistical results of geochemical parameters of Zn distribution in soil from 13 cities of Jiangsu Province
|
|
Zn abundance in the different genetic types of soil of Jiangsu Province
|
|
Zn abundance in the different types soil of parent materials from Jiangsu Province
|
| 全省土壤(n=23 905) | | Zn | Pb | Cu | Fe | Mn | Si | Al | K | Ca | Mg | N | Se | TOC | | Zn | 1.0** | | | | | | | | | | | | | | Pb | 0.43* | 1.0** | | | | | | | | | | | | | Cu | 0.57** | 0.34* | 1.0** | | | | | | | | | | | | Fe | 0.52** | 0.24 | 0.61** | 1.0** | | | | | | | | | | | Mn | 0.18 | 0.20 | 0.25 | 0.56** | 1.0** | | | | | | | | | | Si | -0.36* | 0.02 | -0.28 | -0.54** | -0.37* | 1.0** | | | | | | | | | Al | 0.45* | 0.28 | 0.52** | 0.82** | 0.40* | -0.37* | 1.0** | | | | | | | | K | 0.19 | 0.01 | 0.10 | 0.18 | 0.14 | -0.45* | 0.24 | 1.0** | | | | | | | Na | -0.29 | -0.30 | -0.41* | -0.62** | -0.33* | -0.01 | -0.53** | 0.07 | | | | | | | Ca | 0.12 | -0.16 | 0.02 | 0.11 | 0.14 | -0.82** | -0.15 | 0.25 | 1.0** | | | | | | Mg | 0.34* | -0.13 | 0.19 | 0.37* | 0.20 | -0.87** | 0.16 | 0.40* | 0.82** | 1.0** | | | | | N | 0.39* | 0.24 | 0.34* | 0.31* | -0.07 | 0.07 | 0.33* | -0.04 | -0.29 | -0.14 | 1.0** | | | | P | 0.25 | -0.07 | 0.03 | -0.13 | -.013 | -0.27 | -0.31* | 0.08 | 0.41* | 0.44* | 0.14 | | | | S | 0.14 | 0.09 | 0.09 | 0.02 | -0.03 | -0.13 | 0.02 | 0.02 | 0.11 | 0.12 | 0.10 | | | | Se | 0.32* | 0.42* | 0.32* | 0.19 | 0.06 | 0.16 | 0.22 | -0.08 | -0.27 | -0.26 | 0.44* | 1.0** | | | B | 0.09 | 0.09 | 0.07 | -0.07 | -0.31* | 0.49* | -0.06 | -0.21 | -0.49* | -0.34* | 0.31* | 0.24 | | | Mo | 0.28 | 0.21 | 0.40* | 0.31* | 0.22 | -0.20 | 0.24 | 0.07 | 0.11 | 0.01 | 0.08 | 0.43* | | | TOC | 0.39* | 0.28 | 0.37* | 0.29 | -0.08 | 0.10 | 0.36* | -0.06 | -0.33* | -0.21 | 0.92** | 0.53** | 1.0** | | pH | 0.13 | -0.20 | -0.04 | 0.05 | 0.10 | -0.64** | -0.12 | 0.23 | 0.75** | 0.79** | -0.27 | -0.33* | -0.34* | | 泰州市土壤(n=1 423) | | Zn | Pb | Cu | Fe | Mn | Si | Al | K | Ca | Mg | N | Se | TOC | | Zn | 1.0** | | | | | | | | | | | | | | Pb | 0.76** | 1.0** | | | | | | | | | | | | | Cu | 0.86** | 0.83** | 1.0** | | | | | | | | | | | | Fe | 0.78** | 0.80** | 0.89** | 1.0** | | | | | | | | | | | Mn | 0.74** | 0.68** | 0.81** | 0.78** | 1.0** | | | | | | | | | | Si | -0.77** | -0.72** | -0.84** | -0.88** | -0.80** | 1.0** | | | | | | | | | Al | 0.62** | 0.71** | 0.77** | 0.91** | 0.59** | -0.71** | 1.0** | | | | | | | | K | 0.66** | 0.72** | 0.78** | 0.90** | 0.67** | -0.76** | 0.93** | 1.0** | | | | | | | Na | -0.73** | -0.82** | -0.85** | -0.95** | -0.74** | 0.85** | -0.90** | -0.89** | | | | | | | Ca | 0.24 | 0.05 | 0.17 | -0.01 | 0.40* | -0.35* | -0.33* | -0.19* | 1.0** | | | | | | Mg | 0.55** | 0.28 | 0.48* | 0.33* | 0.62** | -0.58** | 0.01 | 0.17 | 0.82** | 1.0** | | | | | N | 0.39* | 0.43* | 0.39* | 0.38* | 0.06 | -0.32* | 0.40* | 0.31* | -0.23 | -0.080** | 1.0** | | | | P | 0.05 | -0.18 | -0.15 | -0.39* | -0.11 | 0.19 | -0.58** | -0.51** | 0.49* | 0.41* | 0.072 | | | | S | 0.22 | 0.26 | 0.21 | 0.19 | -0.01 | -0.22 | 0.20 | 0.15 | -0.08 | -0.08 | 0.64** | | | | Se | 0.70** | 0.76** | 0.78** | 0.74** | 0.54** | -0.69** | 0.67** | 0.59** | 0.06 | 0.26 | 0.60** | 1.0** | | | B | 0.01 | -0.01 | 0.06 | -0.03 | 0.05 | 0.09 | -0.01 | -0.08 | -0.05 | 0.08 | 0.03 | 0.07 | | | Mo | 0.60** | 0.63** | 0.67** | 0.66** | 0.56** | -0.65** | 0.56** | 0.58** | 0.14 | 0.31* | 0.34* | 0.65** | | | TOC | 0.47* | 0.55** | 0.53** | 0.54** | 0.15 | -0.42* | 0.62** | 0.51** | -0.36* | -0.14* | 0.86** | 0.71** | 1.0** | | pH | -0.05 | -0.23 | -0.18 | -0.32* | 0.10 | 0.03 | -0.55** | -0.39* | 0.73** | 0.56** | -0.41* | -0.27 | -0.54** |
|
Correlation coefficients of Zn and related elements content in the farmland soil from Jiangsu Province and Taizhou City
|
| 分类 | 参数 | w(Zn)/(mg·kg-1) | 占比/% | TOC/% | CEC /(mmol·kg-1) | pH | | F1 | F2 | F1+F2 | Zn全量 | F1 | F2 | F1+F2 | 酸性土壤 (n=328) | Xmin | 1.10 | 3.87 | 7.05 | 38.00 | 1.30 | 7.65 | 13.40 | 0.66 | 92.00 | 4.74 | | Xmax | 36.60 | 65.90 | 86.00 | 228.00 | 31.47 | 35.41 | 55.29 | 3.33 | 404.00 | 6.99 | | $\overline{X}$ | 4.54 | 15.12 | 19.66 | 84.32 | 5.36 | 17.43 | 22.79 | 2.11 | 186.02 | 5.89 | | CV | 0.69 | 0.52 | 0.51 | 0.31 | 0.46 | 0.25 | 0.24 | 0.22 | 0.22 | 0.10 | 碱性土壤 (n=131) | Xmin | 0.80 | 6.42 | 7.96 | 50.00 | 0.77 | 11.44 | 12.88 | 0.19 | 64.00 | 7.00 | | Xmax | 43.40 | 199.00 | 242.40 | 377.00 | 19.43 | 52.79 | 64.30 | 11.89 | 408.00 | 8.44 | | $\overline{X}$ | 5.40 | 27.04 | 32.44 | 103.83 | 4.54 | 22.91 | 27.45 | 1.75 | 200.07 | 7.80 | | CV | 1.11 | 0.95 | 0.96 | 0.51 | 0.61 | 0.35 | 0.37 | 0.66 | 0.42 | 0.06 |
|
Statistics of Zn forms analytical results in the farmland soil in local areas of Jiangsu Province
|
|
Correlation between available Zn and Zn, active form Zn and Zn in soil from Dingshu Town in Jiangsu Province
|
| 分类 | 参数 | 含量/(mg·kg-1) | 有效度/% | TOC/% | CEC /(mmol·kg-1) | pH | | 有效Zn | Zn | 有效Mn | Mn | Se | Zn | Mn | 酸性土壤 (n=2013) | Xmin | 0.86 | 16.60 | 2.11 | 32 | 0.093 | 0.52 | 0.94 | 0.17 | 16.20 | 3.86 | | Xmax | 229 | 1805 | 1424 | 2786 | 3.93 | 71.29 | 94.37 | 7.35 | 598 | 6.99 | | $\overline{X}$ | 6.96 | 71.19 | 191.64 | 481.07 | 0.50 | 7.42 | 35.91 | 1.49 | 146.38 | 5.65 | | CV | 1.16 | 0.77 | 0.83 | 0.52 | 0.56 | 0.50 | 0.39 | 0.39 | 0.34 | 0.13 | 碱性土壤 (n=427) | Xmin | 0.49 | 18.30 | 21.40 | 151 | 0.089 | 0.33 | 5.38 | 0.16 | 52.40 | 7.00 | | Xmax | 290 | 1208 | 6919 | 12188 | 33.50 | 77.67 | 71.66 | 3.64 | 416 | 8.69 | | $\overline{X}$ | 9.09 | 102.05 | 255.24 | 625.58 | 0.56 | 8.57 | 38.03 | 1.37 | 172.58 | 7.60 | | CV | 1.86 | 1.05 | 1.40 | 0.98 | 2.96 | 0.90 | 0.30 | 0.48 | 0.28 | 0.05 |
|
Statistics of geochemical parameters of available Zn distribution in soil of Dingshu Town in Jiangsu Province
|
| 分类 | 参数 | w(Zn)/(mg·kg-1) | BCF(Zn) | w(Se)/(mg·kg-1) | BCF(Se) | w(Cd)/(mg·kg-1) | BCF(Cd) | 土壤pH | | 稻米 | 土壤 | 稻米 | 土壤 | 稻米 | 土壤 | 酸性土壤 (n=840) | Xmin | 8.56 | 29.60 | 0.027 | 0.012 | 0.096 | 0.014 | 0.005 | 0.070 | 0.009 | 4.46 | | Xmax | 41.10 | 1314 | 0.626 | 0.32 | 4.01 | 0.750 | 0.2 | 10.5 | 1.538 | 6.99 | | $\overline{X}$ | 19.82 | 111.29 | 0.243 | 0.059 | 0.486 | 0.142 | 0.073 | 0.750 | 0.171 | 5.80 | | CV | 0.26 | 1.20 | 0.45 | 0.63 | 0.75 | 0.55 | 0.73 | 1.33 | 0.92 | 0.10 | 碱性土壤 (n=423) | Xmin | 7.68 | 42.9 | 0.034 | 0.013 | 0.086 | 0.008 | 0.0026 | 0.074 | 0.005 | 7.00 | | Xmax | 30.9 | 824 | 0.469 | 0.32 | 9.47 | 0.791 | 0.2 | 19.9 | 0.545 | 8.45 | | $\overline{X}$ | 16.07 | 115.97 | 0.160 | 0.063 | 0.730 | 0.160 | 0.037 | 1.454 | 0.046 | 7.79 | | CV | 0.23 | 0.57 | 0.42 | 0.70 | 1.51 | 0.78 | 1.10 | 1.67 | 1.07 | 0.04 |
|
Geochemical parameter statistics of Zn distribution in rice seeds from Taihu and Lixiahe areas in Jiangsu Province
|
|
Correlation between Zn in rice seeds and Zn, Se, total organic carbon and pH in soil from Taihu and Lixiahe Areas in Jiangsu Province
|
| 分类 | 参数 | w(Zn)/(mg·kg-1) | BCF (Zn) | w(Se)/(mg·kg-1) | BCF (SE) | w(Cd)/(mg·kg-1) | BCF (Cd) | w(Mn)/(mg·kg-1) | BCF (Mn) | pH | | 麦籽 | 土壤 | 麦籽 | 土壤 | 麦籽 | 土壤 | 麦籽 | 土壤 | 酸性土壤 (n=90) | Xmin | 15.6 | 36.2 | 0.187 | 0.013 | 0.14 | 0.061 | 0.012 | 0.068 | 0.026 | 13.20 | 58 | 0.027 | 5.14 | | Xmax | 49.8 | 219 | 0.699 | 0.14 | 0.51 | 0.356 | 0.1 | 0.97 | 0.853 | 55.90 | 1267 | 0.552 | 6.99 | | $\stackrel{-}{X}$ | 28.99 | 79.58 | 0.390 | 0.04 | 0.26 | 0.17 | 0.04 | 0.18 | 0.31 | 29.72 | 490.74 | 0.07 | 6.23 | | CV | 0.23 | 0.34 | 0.29 | 0.40 | 0.30 | 0.34 | 0.48 | 0.67 | 0.63 | 0.32 | 0.42 | 0.81 | 0.07 | 碱性土壤 (n=114) | Xmin | 13.4 | 47.6 | 0.079 | 0.012 | 0.11 | 0.064 | 0.009 | 0.08 | 0.038 | 7.57 | 257 | 0.014 | 7.02 | | Xmax | 43.1 | 282 | 0.749 | 0.42 | 1.12 | 2.05 | 0.1 | 0.97 | 0.667 | 61.20 | 2377 | 0.129 | 8.46 | | $\stackrel{-}{X}$ | 27.21 | 84.88 | 0.340 | 0.05 | 0.24 | 0.206 | 0.039 | 0.22 | 0.205 | 26.19 | 642 | 0.044 | 7.87 | | CV | 0.24 | 0.31 | 0.33 | 1.21 | 0.50 | 1.21 | 0.56 | 0.52 | 0.68 | 0.37 | 0.40 | 0.43 | 0.05 |
|
Geochemical parameter statistics of Zn distribution in wheat seeds from Xuhuai and Lixiahe Areas in Jiangsu Province
|
|
Correlation between Zn and Se in rice seeds and Zn and Se in wheat seeds from typical farmland of Jiangsu Province
|
| [1] |
曾庆良, 余涛, 王锐. 土壤硒含量影响因素及富硒土地资源区划研究——以湖北恩施沙地为例[J]. 现代地质, 2018, 32(1):105-112.
|
| [1] |
Zeng Q L, Yu T, Wang R. The influencing factors of selenium in soils and classifying the selenium-rich soil resources in the typical area of Enshi,Hubei[J]. Geoscience, 2018, 32(1):105-112.
|
| [2] |
王志强, 杨建锋, 石天池. 石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1):228-237.
|
| [2] |
Wang Z Q, Yang J F, Shi T C. A preliminary study of Se-rich soil in the Shizuishan aera,Ningxia and its potential for application[J]. Geophysical and Geochemical Exploration, 2023, 47(1):228-237.
|
| [3] |
廖启林, 黄顺生, 许伟伟, 等. 江苏省里下河地区富硒土壤元素地球化学特征及其成因机制[J]. 物探与化探, 2024, 48(4):1114-1124.
|
| [3] |
Liao Q L, Huang S S, Xu W W, et al. Elemental geochemical characteristics and genetic mechanisms of Se-rich soils in the Lixiahe area in Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2024, 48(4):1114-1124.
|
| [4] |
张宏伟, 杨恩林, 焦树林, 等. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48 (2):534-544,554.
|
| [4] |
Zhang H W, Yang E L, Jiao S L, et al. Ge in soils of cultivated land in Qixingguan District:Geochemical characteristics and absorption by crops[J]. Geophysical and Geochemical Exploration, 2024, 48(2):534-544,554.
|
| [5] |
王学寅, 林道秀, 全斌斌, 等. 温州市农用地土壤锗元素地球化学特征、影响因素及开发利用远景评价[J]. 土壤, 2023, 55 (2):409-418.
|
| [5] |
Wang X Y, Lin D X, Quan B B, et al. Geochemical characteristics,influencing factors and utilization prospect evaluation of ge in agricultural land soils in Wenzhou,Zhejiang Province[J]. Soils, 2023, 55 (2):409-418.
|
| [6] |
唐志敏, 张晓东, 梅丽辉, 等. 水土流失区土壤硒、锌地球化学特征及其生物有效性:以福建省长汀县为例[J]. 物探与化探, 2024, 48(4):1125-1135.
|
| [6] |
Tang Z M, Zhang X D, Mei L H, et al. Geochemical characteristics and bioavailability of selenium and zinc in soils in an area subjected to water and soil erosion :A case study of Changting County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2024, 48(4):1125-1135.
|
| [7] |
张哲寰, 戴慧敏, 宋运红, 等. 黑龙江省乌裕尔河流域土壤中某些微量元素地球化学特征[J]. 物探与化探, 2022, 46(5):1097-1104.
|
| [7] |
Zhang Z H, Dai H M, Song Y H, et al. Geochemical characteristics of some soil trace elements in the Wuyuer River Basin,Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1097-1104.
|
| [8] |
李朋飞, 管后春, 王翔, 等. 皖北潮土与砂姜黑土锌含量分布及影响因素[J]. 物探与化探, 2022, 46(6):1545-1554.
|
| [8] |
Li P F, Guan H C, Wang X, et al. The distribution and influencing factors of zinc in the fluvo-aquic soil and the lime concretion black soil in northern Anhui Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1545-1554.
|
| [9] |
刘琦, 王张民, 潘斐, 等. 大田条件下水稻锌营养强化方法探究及效果评估[J]. 土壤, 2019, 51(1):32-38.
|
| [9] |
Liu Q, Wang Z M, Pan F, et al. Effect evaluation on method of zinc biofortification for rice in paddy field[J]. Soils, 2019, 51 (1) :32-38.
|
| [10] |
佘旭, 王朝辉, 马小龙, 等. 黄土高原旱地冬小麦籽粒锌含量差异与主要土壤理化性状的关系[J]. 中国农业科学, 2017, 50(22):4338-4349.
|
| [10] |
She X, Wang Z H, Ma X L, et al. Variation of winter wheat grain zinc concentration and its relation to major soil characteristics in drylands of the loess plateau[J]. Scientia Agricultura Sinica, 2017, 50(22):4338-4349.
|
| [11] |
张丽芳, 夏文建, 张文学, 等. 长期施用猪粪和化肥对稻田土壤Cu、Zn和Cd含量及有效性的影响[J]. 农业环境科学学报, 2022, 41(9):1944-1954.
|
| [11] |
Zhang L F, Xia W J, Zhang W X, et al. Effects of long-term application of pig manure and chemical fertilizers on soil Cu,Zn,and Cd contents and their availability in paddy soil[J]. Journal of Agro-Environment Science, 2022, 41(9):1944-1954.
|
| [12] |
李钰飞, 李吉进, 许俊香, 等. 铜、锌污染梯度对自然林地和农田土壤线虫群落的影响[J]. 土壤学报, 2020, 57(6):1492-1503.
|
| [12] |
Li Y F, Li J J, Xu J X, et al. Effects of copper and zinc contamination on soil nematode communities from natural woodland and farmland[J]. Acta Pedologica Sinica, 2020, 57(6):1492-1503.
|
| [13] |
Giráldez I, Fernández-Caliani J C, Rivera M B. Geochemical behavior and fate of trace elements in naturally contaminated soils under projected land-use changes[J]. Journal of Soils and Sediments, 2020, 20(3):1413-1423.
|
| [14] |
Bouis H E, Eozenou P, Rahman A. Food prices,household income,and resource allocation:Socioeconomic perspectives on their effects on dietary quality and nutritional status[J]. Food and Nutrition Bulletin, 2011, 32(S1):S14-S23.
|
| [15] |
Ma G S, Jin Y, Li Y P, et al. Iron and zinc deficiencies in China:What is a feasible and cost-effective strategy?[J]. Public Health Nutrition, 2008, 11(6):632-638.
|
| [16] |
李湘凌, 张颖慧, 邢怀学, 等. 合肥地区土壤中Zn元素的缓变型地球化学灾害特征[J]. 农业工程学报, 2008, 24(5):42-45.
|
| [16] |
Li X L, Zhang Y H, Xing H X, et al. Characteristics of delayed geochemical hazard (DGH) of Zn elements in soil in Hefei area[J]. Transactions of the CSAE, 2008, 24(5):42-45.
|
| [17] |
赵建, 师华定, 吴啸, 等. 遵义市土壤锌空间分布特征研究[J]. 农业资源与环境学报, 2019, 36(3):298-303.
|
| [17] |
Zhao J, Shi H D, Wu X, et al. Study on spatial distribution of zinc in soils in Zunyi City,China[J]. Journal of Agricultural Resources and Environment, 2019, 36(3):298-303.
|
| [18] |
肖高强, 赵娟, 陈子万, 等. 基于地质大数据技术对云南省土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1):216-227.
|
| [18] |
Xiao G Q, Zhao J, Chen Z W, et al. Delineation of areas with high geological background values of heavy metals in soils in Yunnan Province,China based on geological big data technology[J]. Geophysical and Geochemical Exploration, 2024, 48(1):216-227.
|
| [19] |
廖启林, 华明, 金洋, 等. 江苏土壤重金属分布特征与污染源初步研究[J]. 中国地质, 2009, 36(5):1163-1174.
|
| [19] |
Liao Q L, Hua M, Jin Y, et al. A preliminary study of the distribution and pollution source of heavy metals in soils of Jiangsu Province[J]. Geology in China, 2009, 36(5):1163-1174.
|
| [20] |
杨志敏. 锌污染对小麦萌发期生长和某些生理生化特性的影响[J]. 农业环境保护, 1994, 13(8):121-123.
|
| [20] |
Yang Z M. Effect of Zn-pollution on germination and the physiology and biochemistry of wheat[J]. Agro-environmental protection, 1994, 13(8):121-123.
|
| [21] |
中华人民共和国国土资源部. 多目标区域地球化学调查规范:DZ/T0258—2014[S]. 北京: 中国标准出版社, 2015.
|
| [21] |
Ministry of Land and Resources of the People’s Republic of China. Specification of multi-purpose regional geochemical survey(1∶250 000):DZ/T0258—2014[S]. Beijing: Standards Press of China, 2015.
|
| [22] |
中华人民共和国国土资源部. 土地质量地球化学评价规范:DZ/T0295—2016[S]. 北京: 中国标准出版社, 2016.
|
| [22] |
Ministry of Land and Resources of the People’s Republic of China. Determinationoflandqualitygeochemicalevaluation:DZ/T0295—2016[S]. Beijing: Standards Press of China, 2016.
|
| [23] |
廖启林, 任静华, 许伟伟, 等. 江苏宜溧富硒稻米产区地质地球化学背景[J]. 中国地质, 2016, 43(5):1791-1802.
|
| [23] |
Liao Q L, Ren J H, Xu W W, et al. Geological and geochemical background of Se-rich rice production in Yili area,Jiangsu Province[J]. Geology in China, 2016, 43(5):1791-1802.
|
| [24] |
廖启林, 崔晓丹, 黄顺生, 等. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 2020, 47(6):1813-1825.
|
| [24] |
Liao Q L, Cui X D, Huang S S, et al. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province[J]. Geology in China, 2020, 47(6):1813-1825.
|
| [25] |
崔晓丹, 华明, 黄顺生, 等. 江苏典型富硒区表层土壤硒空间分布及影响因素分析[J]. 农业环境科学学报, 2023, 42(11):2472-2482.
|
| [25] |
Cui X D, Hua M, Huang S S, et al. Spatial distribution of surface soil selenium and its influential factors in a typical selenium-enriched area in Jiangsu Province,China[J]. Journal of Agro-Environment Science, 2023, 42(11):2472-2482.
|
| [26] |
蒋廷惠, 胡霭堂, 秦怀英. 土壤中锌的形态分布及其影响因素[J]. 土壤学报, 1993, 30(3):260-265.
|
| [26] |
Jiang T H, Hu A T, Qin H Y. Distribution of zinc fractions in soils in relation to soil properties[J]. Acta Pedologica Sinica, 1993, 30 (3):260-265.
|
| [27] |
刘合满, 张兴昌, 苏少华, 等. 黄土高原主要土壤锌有效性及其影响因素[J]. 农业环境科学学报, 2008, 27(3):898-902.
|
| [27] |
Liu H M, Zhang X C, Su S H, et al. Available zinc content and related properties of main soil in the loess plateau[J]. Journal of Agricultural Resources and Environment, 2008, 27(3):898-902.
|
| [28] |
石中山, 王春苗, 等. 特拉津·那斯尔, 重庆地区酸性紫色土锌有效性及其影响因素研究[J]. 土壤, 2010, 42 (4):600-605.
|
| [28] |
Shi Z S, Wang C M, Nasir T, et al. Available zinc content and influence factors of acidity purple soil in Chongqing[J]. Soils, 2010, 42 (4):600-605.
|
| [29] |
林蕾, 陈世宝. 土壤中锌的形态转化、影响因素及有效性研究进展[J]. 农业环境科学学报, 2012, 31(2):221-229.
|
| [29] |
Lin L, Chen S B. Transformation and influence factors of speciation of zinc in soils and its effect on ainc bio-availability:A review[J]. Journal of Agro-Environment Science, 2012, 31(2):221-229.
|
| [30] |
王雪梅, 柴仲平, 毛东雷. 不同耕质层土壤有效态微量元素含量特征[J]. 水土保持通报, 2015, 35(2):189-192.
|
| [30] |
Wang X M, Chai Z P, Mao D L. Characteristics of topsoil available trace elements with different textures[J]. Bulletin of Soil and Water Conservation, 2015, 35(2):189-192.
|
| [31] |
Ghoneim A. Effect of different methods of Zn application on rice growth,yield and nutrients dynamics in plant and soil[J]. Journal of Agriculture and Ecology Research International, 2016, 6(2):1-9.
|
| [32] |
谭军, 刘晓颖, 李强, 等. 文山植烟土壤有效锌含量及其影响因素研究[J]. 土壤, 2017, 49(4):719-724.
|
| [32] |
Tan J, Liu X Y, Li Q, et al. Distribution of available zinc in tobacco-planting soils in Wenshan and its influential factors[J]. Soils, 2017, 49(4):719-724.
|
| [33] |
杨思存, 霍琳, 王成宝, 等. 绿洲盐化潮土有效锌含量与盐分离子的相关性及通径分析[J]. 土壤, 2017, 49(3):550-557.
|
| [33] |
Yang S C, Huo L, Wang C B, et al. Correlation and path analyses of available zinc contents and salt ions in saline fluvo-aquic soil of Hexi Oasis Area[J]. Soils, 2017, 49(3):550-557.
|
| [34] |
Ramaiyan S, Vijayakumar P, Balasubramanian R A B, et al. Influence of nano-zinc oxide and fortified rice residue compost on rice productivity,zinc biofortification,zinc use efficiency,soil quality,zinc fractions and profitability in different rice production systems[J]. Journal of Plant Nutrition, 2023, 46(17):4063-4084.
|
| [35] |
褚宏欣, 党海燕, 王涛, 等. 我国主要麦区土壤有效铁锰铜锌丰缺状况评价及影响因素[J]. 土壤学报, 2024, 61(1):129-139.
|
| [35] |
Chu H X, Dang H Y, Wang T, et al. Evaluations and influencing factors of soil available Fe,Mn,Cu and Zn concentrations in major wheat production regions of China[J]. Acta Pedologica Sinica, 2024, 61(1):129-139.
|
| [36] |
森林土壤有效锌的测定:LY/T1261—1999[S].国家林业局, 1999.
|
| [36] |
Determinationofavailablezincinforestsoil:LY/T1261—1999[S].State Forestry Administration, 1999.
|
| [37] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 土壤和沉积物 13个微量元素形态顺序提取程序:GB/T25282—2010[S]. 北京: 中国标准出版社, 2011.
|
| [37] |
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Soil and sediment—Sequential extraction procedure of speciation of 13 trace elements: GB/T25282—2010[S]. Beijing: Standards Press of China, 2011.
|
| [38] |
Yang J, Liu C R, Wang R Z, et al. Unlocking Zn biofortification:Leveraging high-Zn wheat and rhizospheric microbiome interactions in high-pH soils[J]. Biology and Fertility of Soils, 2024, 60(7):969-985.
|
| [39] |
李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
|
| [39] |
Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2):502-516.
|
| [40] |
周雪妮, 曹亚廷, 计扬. 岷江上游干旱河谷区汶川段风化壳剖面元素地球化学特征[J]. 物探与化探, 2024, 48(3):597-608.
|
| [40] |
Zhou X N, Cao Y T, Ji Y. Element geochemical characteristics of weathering crust profiles of the Wenchuan section in the upper arid valley of the Minjiang River[J]. Geophysical and Geochemical Exploration, 2024, 48(3):597-608.
|
| [41] |
李秋燕, 张一鹤, 魏明辉, 等. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5):1114-1120.
|
| [41] |
Li Q Y, Zhang Y H, Wei M H, et al. Spatial distribution of the soil trace elements in Hailun City[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1114-1120.
|
| [42] |
高弼模, 吴建明, 高贤彪. 土壤中锌的吸附固定及影响因子[J]. 山东农业大学学报, 1987, 18(2):25-32.
|
| [42] |
Gao B M, Wu J M, Gao X B. Absorptive fixation and effective factors of zinc in soil[J]. Journal of Shandong Agricultural University, 1987, 18(2):25-32.
|
| [43] |
张会民, 吕家珑, 徐明岗, 等. 土壤性质对锌吸附影响的研究进展[J]. 西北农林科技大学学报:自然科学版, 2006, 34 (5):114-118.
|
| [43] |
Zhang H M, Lyu J L, Xu M G, et al. Research progress on the influence of soil properties on zinc adsorption[J]. Journal of Northwest A & F University:Natural Science Edition, 2006, 34(5):114-118.
|
| [44] |
石璞, Chiahue Doua Yang, 赵鹏志. 间歇性降雨对土壤团聚体粒级及磷、铜、锌富集的影响[J]. 土壤学报, 2021, 58(4):948-956.
|
| [44] |
Shi P, Yang C D, Zhao P Z. Effect of intermittent rainfall on size distribution and phosphorus,copper and zinc enrichment of soil aggregates[J]. Acta Pedologica Sinica, 2021, 58(4):948-956.
|
| [45] |
陈艳龙, 贾舟, 师江澜, 等. 秸秆还田对石灰性土壤Zn扩散迁移及形态转化的影响[J]. 土壤学报, 2018, 55(3):721-723.
|
| [45] |
Chen Y L, Jia Z, Shi J L, et al. Effect of straw return on diffusion,translocation and transformation of zinc in calcareous soil[J]. Acta Pedologica Sinica, 2018, 55(3):721-723.
|
| [46] |
赵筱媛, 杨忠芳, 程惠怡, 等. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1):238-249.
|
| [46] |
Zhao X Y, Yang Z F, Cheng H Y, et al. Geochemical characteristics and ecological health related ranges of copper in soil in Huaying Mountain-Xicao in Linshui County,Sichuan Province[J]. Geophysical and Geochemical Exploration, 2022, 46(1):238-249.
|
| [1] |
CHEN Geng-Hu, LANG Xing-Hai, WANG Zhao-Shuai, DONG Wei-Cai, WANG Deng-Ke, XIANG Zuo-Peng, LI Zhuang, YE Zi-Feng, WU Chang-Yi, WANG Xu-Hui, WU Tian-Wen, LUO Chao. Geochemical characteristics and anomaly assessments of soils in the Songshunangou gold mining area, Qinghai Province[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1281-1290. |
| [2] |
CHEN Shang-Ren, ZHONG Xiao-Yu, LI Jie, YANG Min-Yun, HUANG Juan, CHEN Biao, HE Yao-Ye. Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1440-1448. |
|
|
|
|