|
|
|
| Characteristics of U-Ra equilibrium coefficients in the Manglai uranium deposit, Erlian Basin |
XIONG Pan1( ), WANG Wei2, QIN Yan-Wei1, LI Peng1, CHEN Ming-Xin1, TIAN Hao-Yu1, LIU Bo1( ) |
1. Geologic Party No.208, CNNC, Baotou 014010, China 2. Research Institute No.203, CNNC, Xi'an 710086, China |
|
|
|
|
Abstract The uranium-radium (U-Ra) equilibrium coefficient is a significant correction parameter for the resource and reserve estimation of in situ leached (ISL) sandstone uranium deposits, directly influencing the accuracy and scientificity of such estimations. Employing a high-purity germanium gamma-ray spectrometer, this study determined the U and Ra contents of 1 431 samples from the Manglai uranium deposit in the Erlian Basin, yielding U-Ra equilibrium coefficients for these samples. Statistical analyses were performed on the U-Ra equilibrium coefficients in terms of frequency distribution, U content, grain size, lithology, and spatial distribution, to explore the primary factors influencing the changes in U-Ra equilibrium coefficients and their implications. The results indicate that the Manglai uranium deposit showed a U-Ra equilibrium coefficient of 0.85, suggesting that the deposit is significantly richer in U. The U-Ra equilibrium coefficient was negatively correlated with U's concent and grade. Additionally, the U-Ra equilibrium coefficient exhibited distinct vertical zoning within ore bodies. Within uranium-mineralized sand bodies, the most favorable grain sizes were observed in sandy conglomerates, coarse- and fine-grained sandstones. The presence of grayish-black and dark black mudstones contributed to uranium enrichment and mineralization in adjacent mineralized sand bodies. The block I-1 in the southern main ore body exhibits significant uranium enrichment potential and the highest U enrichment degree. The uranium deposit is overall richer in U, with almost no Ra-richer zones, indicating that the uranium deposit experienced minimal oxidative transformation after its formation. The results of this study provide a scientific basis for the subsequent construction arrangement of in situ leaching at the Manglai uranium deposit while contributing to a deeper understanding of the deposit's mineralization regularity.
|
|
Received: 25 July 2024
Published: 23 October 2025
|
|
|
|
|
|
|
Schematic diagram of structural units in Erlian Basin (a) and Manit Depression (b)
|
10]) 1—oxidized sand body; 2—grey sand body; 3—uranium ore body; 4—exploration line and number; 5—block ore body number; 6—mudstone; 7—siltstone; 8—gravel bearing fine sandstone; 9—gravel bearing sandstone; 10—gravel bearing coarse sandstone; 11—sandy conglomerate; 12—inconsistent stratigraphic angle; 13—quantitative gamma logging curve; 14—three lateral apparent resistivity logging curve ">
|
The planar distribution of the Manglai uranium deposit (a) and the braided river sedimentary of the upper section of the Saihan Formation (b) (modified according to reference [10]) 1—oxidized sand body; 2—grey sand body; 3—uranium ore body; 4—exploration line and number; 5—block ore body number; 6—mudstone; 7—siltstone; 8—gravel bearing fine sandstone; 9—gravel bearing sandstone; 10—gravel bearing coarse sandstone; 11—sandy conglomerate; 12—inconsistent stratigraphic angle; 13—quantitative gamma logging curve; 14—three lateral apparent resistivity logging curve
|
|
Geological profile map of B1205 line ore body in the southern part of Manglai uranium deposit 1—Irding Manha Formation; 2—upper section of Saihan Formation; 3—lower section of Saihan group; 4—inconsistent stratigraphic angle; 5—lithological boundary; 6—gray sand body; 7—oxidation sand body; 8—mudstone layer; 9—uranium ore body; 10—mineralized body; 11—quantitative gamma logging curve,γ/(nC·kg-1·h-1); 12—three lateral apparent resistivity logging curve,LL3/(Ω·m)
|
|
Frequency distribution histogram of uranium radium equilibrium coefficient of Manglai uranium deposit samples
|
采集 样品数 | 渗透性 矿石单 样品数 | 参与计算 的样品数 | 样品铀镭平衡系数Kp,i | 矿体铀镭 平衡系数 Kp | | 最小值 | 最大值 | 变异 系数 | 偏度 | 峰度 | 平均值 | 中位数 | 均方差 | | 偏度值 | 标准误差 | 峰度值 | 标准误差 | | 1431 | 982 | 955 | 0.45 | 1.38 | 17% | 0.438 | 0.079 | 0.288 | 0.158 | 0.91 | 0.90 | 0.156 | 0.85 |
|
Statistical analysis results of uranium radium equilibrium coefficient of Manglai uranium deposit
|
|
Density distribution curve of uranium radium equilibrium coefficient of samples
|
| 品级区间/% | 样品数 | Kp | 平衡情况 | 备注 | | <0.010 | 314 | 1.00 | 平衡 | | 统计 时剔 除异 常值 | | 0.010~0.050 | 669 | 0.92 | 略偏铀 | | | 0.030~0.050 | 138 | 0.91 | 略偏铀 | | | 0.050~0.100 | 78 | 0.87 | 较偏铀 | | | ≥0.100 | 70 | 0.77 | 严重偏铀 | |
|
Uranium radium equilibrium coefficients for uranium content in different grade ranges
|
|
Relationship between uranium radium equilibrium coefficient and uranium content in ore
|
|
Relationship between uranium radium equilibrium coefficient and particle size change
|
| 统计项目 | 泥质砾岩 | 砂质砾岩 | 粗砂岩 | 中砂岩 | 细砂岩 | 泥岩、粉砂岩 | 备注 | | 样品数 | 7 | 301 | 295 | 243 | 105 | 76 | 统计时剔除 异常值,所用 样品铀含量 均不小于0.010% | | Kp,i中位数 | 0.85 | 0.92 | 0.89 | 0.89 | 0.91 | 0.86 | | Kp,i平均值 | 0.87 | 0.93 | 0.91 | 0.89 | 0.91 | 0.93 | | Kp加权平均值 | 0.79 | 0.84 | 0.84 | 0.87 | 0.84 | 0.78 | | 均方差 | 0.198 | 0.171 | 0.148 | 0.128 | 0.171 | 0.245 | | 变异系数/% | 23 | 18 | 16 | 14 | 19 | 27 |
|
Uranium radium equilibrium coefficients of samples with different particle sizes
|
|
Frequency distribution map of uranium radium equilibrium coefficient in rocks of different mineralization types
|
| 统计项目 | 矿化砂岩 | 非矿化砂岩 | 矿化泥岩 | 非矿化泥岩 | | 样品数 | 955 | 314 | 76 | 27 | | Kp,i中位数 | 0.90 | 0.98 | 0.86 | 1.28 | | Kp,i平均值 | 0.91 | 1.03 | 0.93 | 1.53 | | Kp加权平均值 | 0.85 | 1.00 | 0.78 | 1.41 | | 均方差 | 0.156 | 0.295 | 0.245 | 0.927 | | 变异系数/% | 17 | 29 | 27 | 61 | | 铀镭平衡特征 | 偏铀 | 略偏镭 | 偏铀 | 偏镭 |
|
Uranium and radium equilibrium coefficients for samples of different mineralization types
|
| 块段编号 | 参与计算 的样品数 | 最小值 | 最大值 | 平均值 | 中位数 | 均方差 | 变异系数/% | 块段铀镭 平衡系数 | 位置 | | Ⅰ-2 | 50 | 0.56 | 1.51 | 0.94 | 0.90 | 0.192 | 20 | 0.86 | 南部 | | Ⅰ-1 | 526 | 0.47 | 1.35 | 0.91 | 0.90 | 0.147 | 16 | 0.83 | 南部主矿体 | | Ⅰ-3 | 75 | 0.51 | 1.47 | 0.99 | 0.93 | 0.161 | 16 | 0.99 | 中部 | | Ⅰ-4 | 341 | 0.44 | 1.38 | 0.91 | 0.89 | 0.157 | 17 | 0.86 | 北部主矿体 |
|
Statistical results of uranium and radium equilibrium coefficients in each block of the deposit
|
|
Changes in uranium and radium equilibrium coefficients of each block of the ore body
|
|
Contour map of uranium content per square meter in the I-1 ore body of the Manglai uranium deposit
|
|
WTZK15-7-1 histogram and schematic diagram of core photos 1—mudstone; 2—siltstone; 3—fine sandstone; 4—sandstone with gravel; 5—gravel bearing coarse sandstone; 6—sandy conglomerate; 7—kaolinization; 8—brown iron mineralization; 9—carbonized plant debris; 10—pyrite; 11—lateral resistivity logging curve; 12—quantitative gamma logging curve
|
| [1] |
刘波, 杨建新, 秦彦伟, 等. 二连盆地中东部赛汉组古河谷砂岩型铀矿床控矿成因相研究[J]. 地质与勘探, 2016, 52(6):1037-1047.
|
| [1] |
Liu B, Yang J X, Qin Y W, et al. Research on the ore-controlling genetic facies of the sandstone type uranium deposits in the paleovalley of Saihan formation of the Erlian Basin[J]. Geology and Exploration, 2016, 52(6):1037-1047.
|
| [2] |
齐天骄, 李西得, 刘旭, 等. 二连盆地芒来铀矿赋矿砂岩地球化学特征[J]. 铀矿地质, 2020, 36(5):362-372.
|
| [2] |
Qi T J, Li X D, Liu X, et al. Geochemical characteristics of the host sandstone of the Manglai uranium deposit in the Erlian Basin[J]. Uranium Geology, 2020, 36 (5):362-372.
|
| [3] |
杨崇根. 二连盆地芒来铀矿床岩石地球化学特征及矿床成因探讨[D]. 抚州: 东华理工大学, 2021.
|
| [3] |
Yang C G. Petrogeochemical characteristics and genesis of Manglai uranium deposit in Erlian Basin[D]. Fuzhou: East China Institute of Technology, 2021.
|
| [4] |
张明瑜. 钱家店铀矿床U-Ra平衡系数特征研究[J]. 铀矿地质, 2004, 20(6):365-369.
|
| [4] |
Zhang M Y. Study on the U-Ra equilibrium coefficient characteristics of the Qianjiadian uranium deposit[J]. Uranium Geology, 2004, 20 (6):365-369.
|
| [5] |
李勇, 张凯, 潘洪松, 等. 内蒙古巴仁扎拉格801矿床铀—镭平衡系数特征研究[J]. 世界核地质科学, 2018, 35(3):150-153,179.
|
| [5] |
Li Y, Zhang K, Pan H S, et al. Study on characteristics of uranium-radium equilibrium coefficient in Barenzhalage 801 mine,Inner Mongolia[J]. World Nuclear Geoscience, 2018, 35(3):150-153,179.
|
| [6] |
夏彧, 周恳恳, 伍皓, 等. 龙川江盆地团田地区砂岩型铀矿U-Ra平衡系数特征及其地质意义[J]. 世界核地质科学, 2018, 35(2):92-97.
|
| [6] |
Xia Y, Zhou K K, Wu H, et al. Study on U-Ra equilibrium coefficient of sandstone type uranium deposits in Tuantian,Longchuanjiang Basin[J]. World Nuclear Geoscience, 2018, 35(2):92-97.
|
| [7] |
苗辰若. 伊犁盆地阔斯加尔地区西山窑组上段铀—镭平衡系数特征及其地质意义[J]. 东华理工大学学报:自然科学版, 2022, 45(4):390-400.
|
| [7] |
Miao R C. Characteristics and geological significance of the uranium radium equilibrium coefficient in the upper section of the Xishanyao Formation in the Kuisgar area of the IIi Basin[J]. Journal of Donghua University of Technology:Natural Science Edition, 2022, 45 (4):390-400.
|
| [8] |
夏毓亮, 修群业, 韩军, 等. 地浸砂岩型铀矿床铀—镭平衡系数研究及其地质意义[J]. 铀矿地质, 2013, 29(2):93-98.
|
| [8] |
Xia Y L, Xiu Q Y, Han J, et al. Study on U-Ra equilibrium coefficient of the in situ leaching sandstonetype uranium deposits:A case study of Qianjiadian uranium deposit[J]. Uranium Geology, 2013, 29(2):93-98.
|
| [9] |
封志兵, 聂逢君, 夏菲, 等. 砂岩型铀矿的矿体形态特征及其成因探讨[J]. 铀矿地质, 2021, 37(6):981-990.
|
| [9] |
Feng Z B, Nie F J, Xia F, et al. Discussion on the shapes and their genesis of ore body in sandstone-type uranium deposits[J]. Uranium Geology, 2021, 37(6):981-990.
|
| [10] |
王伟, 武正乾, 熊攀, 等. 基于克里格法刻画砂岩型铀矿U、Ra和U-Ra平衡系数垂向分布规律——以二连盆地芒来铀矿床为例[J]. 地质与勘探, 2024, 60(2):236-243.
|
| [10] |
Wang W, Wu Z Q, Xiong P, et al. Vertical distribution patterns of the U,Ra and U-Ra equilibrium coefficient for sandstone uranium ores based on the Kriging method:An example from the Manglai uranium deposit in Erlian Basin[J]. Geology and Exploration, 2024, 60(2):236-243.
|
| [11] |
李运祓, 赵元洪, 童纯涵, 等. 放射性勘探方法[M]. 北京: 原子能出版社,1978.
|
| [11] |
Li Y F, Zhao Y H, Tong C H, et al. Radioactive exploration methods[M]. Beijing: Atomic Energy Press,1978.
|
| [12] |
徐式朴. 我国铀矿床放射性平衡系数的变化特征[J]. 铀矿地质, 1983, 8(2):57-60.
|
| [12] |
Xu S P. Characteristics of changes in the radioactive equilibrium coefficient of uranium deposits in China[J]. Uranium Geology, 1983, 8 (2):57-60.
|
| [13] |
章晔, 华荣洲, 石柏慎. 放射性方法勘查[M]. 北京: 原子能出版社,1990.
|
| [13] |
Zhang Y, Hua R Z, Shi B S. Radioactive method exploration[M]. Beijing: Atomic Energy Press,1990.
|
| [14] |
李强, 黄宝峰. 铀—镭平衡系数的算法研究[J]. 河南理工大学学报:自然科学版, 2010, 29(S1):28-30,36.
|
| [14] |
Li Q, Huang B F. Study on the algorithm of uranium radium equilibrium coefficient[J]. Journal of Henan Polytechnic University:Natural Science, 2010, 29(S1):28-30,36.
|
| [15] |
李继安, 周伟. 十红滩铀矿床北带铀—镭平衡系数计算及特征研究[J]. 铀矿地质, 2013, 29(5):296-300.
|
| [15] |
Li J A, Zhou W. Research on the calculation of uranium and radium equilibrium coefficient and its characteristics in the north belt of Shihongtan uranium deposit[J]. Uranium Geology, 2013, 29(5):296-300.
|
| [16] |
黄建国, 杨亚新. 砂岩型铀矿铀镭及镭氡平衡系数研究[D]. 南昌: 东华理工大学, 2017.
|
| [16] |
Huang J G, Yang Y X. Research on the equilibrium coefficients of uranium radium and radium radon in sandstone type uranium deposits[D]. Nanchang: Donghua University of Technology, 2017.
|
| [17] |
国家国防科技工业局. EJ/T 1094—2018铀镭平衡系数测定规程[S]. 北京: 核工业标准化研究所, 2018.
|
| [17] |
State Administration of Science,Technology and Industry for National Defense. EJ/T 1094—2018 Determination regulations for uranium radium equilibrium coefficient[S]. Beijing: Institute of Nuclear Industry Standardization, 2018.
|
| [18] |
黄镪俯, 熊攀, 任晓平, 等. 内蒙古苏尼特左旗巴彦乌拉铀矿床芒来铀矿床勘查地质报告[R]. 核工业二〇八大队, 2018.
|
| [18] |
Huang Q F, Xiong P, Ren X P, et al. Geological report on exploration of Manglai uranium deposit in Bayanwula uranium deposit,Sunite Left Banner,Inner Mongolia[R]. Geologic Party No.208,CNNC, 2018.
|
| [19] |
熊攀. 二连盆地芒来铀矿床镭氡平衡系数研究[J]. 铀矿冶, 2024, 43(1):12-19.
|
| [19] |
Xiong P. Study on the radon balance coefficient of Manglai uranium deposit in the Erlian Basin[J]. Uranium Mining and Metallurgy, 2024, 43 (1):12-19.
|
| [20] |
尹明, 李家熙. 岩石矿物分析[M] .4版. 北京: 地质出版社, 2011.
|
| [20] |
Yin M, Li J X. Rock mineral analysis[M]. 4th ed. Beijing: Geological Publishing House, 2011.
|
| [21] |
陈霜, 王浩锋, 刘波, 等. 巴音戈壁盆地塔木素铀矿床铀—镭平衡系数研究及其地质意义[J]. 东华理工大学学报:自然科学版, 2022, 45(4):355-362.
|
| [21] |
Chen S, Wang H F, Liu B, et al. Research on uranium-radium balance coefficient of tamusu uranium deposit in Bayingebi Basin and its geological significance[J]. Journal of East China University of Technology:Natural Science, 2022, 45(4):355-362.
|
| [22] |
熊攀, 吴金钟, 黄锵俯, 等. 泥岩夹层在巴彦乌拉铀矿床铀成矿作用中的意义[C]// 中国核学会学术年会论文集(五), 2017.
|
| [22] |
Xiong P, Wu J Z, Huang Q F, et al. The significance of mudstone interlayers in uranium mineralization in the Bayannula uranium deposit[C]// Proceedings of the Annual Conference of the Chinese Nuclear Society (5),2017.
|
| [23] |
张锦由. U-Ra平衡系数的表达式及其应用[J]. 铀矿地质, 1987, 3(6):374-379.
|
| [23] |
Zhang J Y. The expression and application of U-Ra equilibrium coefficient[J]. Uranium Geology, 1987, 3 (6):374-379.
|
| [24] |
蒋喆, 韩效忠, 胡航, 等. 二连盆地恩格日音砂岩型铀矿床U-Ra平衡特征、影响因素及其地质意义[J]. 中国煤炭地质, 2022, 34(10):37-43.
|
| [24] |
Jiang Z, Han X Z, Hu H, et al. U-Ra equilibrium characteristics,influencing factors,and geological significance of the Enge Riyin sandstone type uranium deposit in the Erlian Basin[J]. Coal Geology of China, 2022, 34 (10):37-43.
|
| [25] |
刘国安, 乔鹏, 康世虎, 等. 二连盆地芒来矿床砂体的非均质性与铀成矿关系研究[J]. 铀矿地质, 2020, 36(5):373-381.
|
| [25] |
Liu G A, Qiao P, Kang S H, et al. Study on the relationship between heterogeneity of sand bodies and uranium mineralization in the Manglai deposit of the Erlian Basin[J]. Uranium Geology, 2020, 36 (5):373-381.
|
| [26] |
王大钊, 冷成彪, 秦朝建, 等. 铀的地球化学性质与成矿作用[J]. 大地构造与成矿学, 2022, 46(2):282-302.
|
| [26] |
Wang D Z, Leng C B, Qin C J, et al. Geochemical properties and mineralization of uranium[J]. Geotectonics and Metallogeny, 2022, 46 (2):282-302.
|
| [1] |
LIU Dong-Sheng, CHEN Yuan-Yuan, CHI Qing-Hua. Construction of the petrogeochemical map of 76 elements in the exposed crust across the Chinese continent: Methods, challenges, and prospects[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1008-1017. |
| [2] |
ZHANG Hong-Yan, ZHAO Huan, GUO Peng. Geochemical characteristics and deep metallogenic prediction of the Laowan gold belt in Tongbai County, Henan Province[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1039-1052. |
|
|
|
|