|
|
An experimental study on the influence of step topographies in strip mines on the exploration performed using the high-density resistivity method |
ZHAO Zi-Hao1(), LI Peng-Hui1,2(), LYU Hai-Jian1, KANG Sen1 |
1. School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, China 2. Beixinyao Coal Industry Company, Jinneng Holding Coal Industry Group, Xinzhou 034000, China |
|
|
Abstract The stability assessment of strip mine slopes is a fundamental means to prevent slope accidents. To investigate the influence of step topographies on the exploration using the high-density resistivity method on strip mine steps, this study conducted flume experiments for simulation using similar materials to explore the current field distribution in the profile to be surveyed. The experimental results show that: (1) The shallow positions near the upper and lower slope lines and the breadth line of the cleaning berm exhibited high current densities and even current distributions; (2) The middle positions manifested sharply changed current densities, with their contours akin to the step topography; (3) The deep positions displayed low current densities and tardy current changes; (4) A significant current gathering effect was observed near the slope bottom line on the profile; (5) Compared to flat topographies, step topographies exhibited high current densities and uneven current distributions. This suggests that in the exploration using the high-density resistivity method, step topographies in strip mines can cause abnormal inversion results for the middle positions and positions near the slope bottom line.
|
Received: 08 September 2022
Published: 16 April 2024
|
|
Corresponding Authors:
LI Peng-Hui
E-mail: phyzzh@imust.edu.cn;xszylph1566@163.com
|
|
|
|
|
Realistic view of the slope of open pit mine
|
|
The elements of steps
|
|
Sink experimental device(a) and its diagram(b)
|
通电位置 | 通电位 置编号 | 通电位置离 地高度/cm | 水面离地高度/cm | 水槽 | 1/4截面 | 1/3截面 | 1/2截面 | 低通位置 | P1、N1、 P1'、N1' | 7 | 左槽 | 26.5 | 33 | 46 | 右槽 | 65.5 | 59 | 46 | 高通位置 | P2、N2、 P2'、N2' | 31 | 左槽 | 50.5 | 57 | 70 | 右槽 | 89.5 | 83 | 70 |
|
Power on position and section parameters of sink
|
|
Measuring points for wire fixing plate
|
实验 | 边界效应研究 | (1)P1(+)和N1(-),1/2截面 | (1)和(3)对比 (2)和(4)对比 | (2)P1(+)和N1(-),1/3截面 | (3)P2(+)和N2(-),1/2截面 | (4)P2(+)和N2(-),1/3截面 |
|
Experimental table of boundary effect studies
|
|
Experimental results of boundary effect research
|
实验 | 地形对比 | (1)P2(+)和N2(-),1/2截面 | (1)和(3)对比 (2)和(4)对比 | (2)P2(+)和N2(-),1/3截面 | (3)P2’(+)和N2’(-),1/2截面 | (4)P2’(+)和N2’(-),1/3截面 |
|
Topographical comparison experiment table
|
|
Measuring points for fixed wire plates in flat terrain
|
|
Three-dimensional and contour figure from plane topographic experiment
|
实验 | 含高阻或低阻地层 | (1)P2(+)和N2(-),1/2截面 | (1)、(2)、(3)对比 | (2)P2(+)和N2(-),1/3截面 | (3)P2(+)和N2(-),1/4截面 |
|
Experiments containing high resistance or low resistance strata
|
|
Comparison diagram of the experimental results of uniform strata and high-resistance strata
|
|
Comparison of experimental results of uniform and low resistance strata
|
[1] |
国家安全监管总局. 非煤矿山领域遏制重特大事故工作方案[R]. 2016.
|
[1] |
State Administration of Work Safety. Work plan for curbing major accidents in non coal mining areas[R]. 2016.
|
[2] |
王芝水, 缪旭煌, 张建明, 等. 综合电法在安徽西湾铅锌矿勘探中的应用[J]. 地质学刊, 2023, 47(2):208-215.
|
[2] |
Wang Z S, Miao X H, Zhang J M, et al. Application of comprehensive electric method in the exploration of the Xiwan lead-zinc deposit in Anhui Province[J]. Journal of Geology, 2023, 47(2):208-215.
|
[3] |
惠军, 谭维佳. 超高密度电法在上覆型岩溶勘察中的应用[J]. 地质学刊, 2022, 46(1):84-90.
|
[3] |
Hui J, Tan W J. Application of ultra-high density resistivity method in overlying Karst exploration[J]. Journal of Geology, 2022, 46(1):84-90.
|
[4] |
刘方文, 马冠群. 稳定电流场的反射、透射、衍射——波动性[J]. 地球物理学报, 1992, 35(3):396-401.
|
[4] |
Liu F W, Ma G Q. Reflection,transmission and diffraction—Fluctuation of steady current field[J]. Chinese Journal of Geophysics, 1992, 35(3):396-401.
|
[5] |
傅平. 论稳定电流场的入射、反射、透射间的关系[J]. 地球物理学报, 1994, 37(1):108-114.
|
[5] |
Fu P. On the relationship among incidence,reflection and transmission of stable current field[J]. Chinese Journal of Geophysics, 1994, 37(1):108-114.
|
[6] |
陈丽虹, 孙建国. 稳定电流场的拟线性近似方法研究[J]. 石油地球物理勘探, 2004, 39(5):589-593,498-628.
|
[6] |
Chen L H, Sun J G. Study of pseudo-linear approximate method for stable current field[J]. Oil Geophysical Prospecting, 2004, 39(5):589-593,498-628.
|
[7] |
刘阳, 王凯, 韩伟, 等. 三维地电体的静电场数值计算[J]. 吉林大学学报:信息科学版, 2005, 23(5):565-568.
|
[7] |
Liu Y, Wang K, Han W, et al. Static electric field numerical calculation of three-dimensions geoelectric object[J]. Journal of Changchun Post and Telecommunication Institute, 2005, 23(5):565-568.
|
[8] |
岳建华, 薛国强. 中国煤炭电法勘探36年发展回顾[J]. 地球物理学进展, 2016, 31(4):1716-1724.
|
[8] |
Yue J H, Xue G Q. Review on the development of Chinese coal electric and electromagnetic prospecting during past 36 years[J]. Progress in Geophysics, 2016, 31(4):1716-1724.
|
[9] |
杨成华, 孟海东. 高密度电法探测露天矿地下水的应用研究[J]. 煤炭技术, 2018, 37(2):189-191.
|
[9] |
Yang C H, Meng H D. Study on application of high density electrical method in detecting groundwater in open pit[J]. Coal Technology, 2018, 37(2):189-191.
|
[10] |
邬健强, 赵茹玥, 甘伏平, 等. 综合电法在岩溶山区地下水勘探中的应用—以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1):93-98.
|
[10] |
Wu J Q, Zhao R Y, Gan F P, et al. The application of electrical prospecting method to groundwater exploration in Karst mountainous areas:A case study of Changtang Village,Huaihua area,Hunan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1):93-98.
|
[11] |
孙鸿雁. 电法勘探地形影响问题研究进展[C]// 资源、环境与工程电法勘探方法技术交流会论文集. 北京: 中国地质学会, 2003:135-141.
|
[11] |
Sun H Y. A review of progress in research on terrain effects in electric and electromagnetic explorations[C]// Edings of Resources,Environment and Engineering. Beijing: Geological Society of China, 2003:135-141.
|
[12] |
郑智杰. 起伏对高密度电法探测地下岩溶管道的影响试验研究[J]. 工程地质学报, 2017, 25(1):230-236.
|
[12] |
Zheng Z J. Experimental study on influence of terrain fluctuation to high-density resistivity method for detecting underground karst pipes[J]. Journal of Engineering Geology, 2017, 25(1):230-236.
|
[13] |
宋昊翔. 起伏地形下高密度电法地形响应研究——以松潘地区为例[D]. 北京: 中国地质大学(北京), 2017.
|
[13] |
Song H X. A Research on topographic response of high-density resistivity method in rugged area-illustrated by the case of Songpan area[D]. Beijing: China University of Geosciences(Beijing), 2017.
|
[14] |
王文杰, 郝一, 薄海军, 等. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4):869-881.
|
[14] |
Wang W J, Hao Y, Bo H J, et al. A case analysis of multielectrode resistivity method for determining a well location in groundwater prospecting in the ore concentration area of Guyang County,Baotou City[J]. Geophysical and Geochemical Exploration, 2021, 45(4):869-881.
|
[15] |
Takeshhi K. Addenda to the paper:The topographic effect in resistivity prospecting[J]. Geophysical Exploration:Butsuri-Tansa, 1953, 6(1):51-54.
|
[16] |
程久龙, 于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报, 2000, 43(5):699-706.
|
[16] |
Cheng J L, Yu S J. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics, 2000, 43(5):699-706.
|
[17] |
白广明, 张耘菡, 刘晓波, 等. 有渗漏隐患黏土堤坝电阻率模拟试验及分析[J]. 黑龙江水利, 2017, 3(12):12-19.
|
[17] |
Bai G M, Zhang Y H, Liu X B, et al. Simulation test and analysis of resistivity of clay dam with hidden leakage trouble[J]. Heilongjiang Water Resources, 2017, 3(12):12-19.
|
[18] |
徐玳笠, 唐宝山, 魏文博. 龙门山断裂带及其邻区电性结构特征[J]. 物探与化探, 2019, 43(1):17-27.
|
[18] |
Xu D L, Tang B S, Wei W B. Electrical structure characteristics of Longmen fault zone and its adjacent areas[J]. Geophysical and Geochemical Exploration, 2019, 43(1):17-27.
|
[19] |
许方领, 阮怀宁, 黄肖, 等. 考虑降雨入渗的非饱和土边坡流固耦合数值分析[J]. 河南科学, 2019, 37(6):955-961.
|
[19] |
Xu F L, Ruan H N, Huang X, et al. Fluid solid coupling numerical analysis of unsaturated soil slope considering rainfall infiltration[J]. Henan Science, 2019, 37(6):955-961.
|
[20] |
田刚, 雷胜友, 袁文治, 等. 裂隙膨胀土边坡的湿热耦合特性及稳定性研究[J]. 河南科学, 2020, 38(9):1425-1432.
|
[20] |
Tian G, Lei S Y, Yuan W Z, et al. Moisture-heat coupling feature and stability of expansive soil slope with fissures[J]. Henan Science, 2020, 38(9):1425-1432.
|
[21] |
Fox R C, Hohman G W, Killpack T J, et al. Topographic effects in resistivity and induced-polarization surveys[J]. Geophysics, 1980, 45(1):75-93.
|
[22] |
Xu S Z, Zhang D H, Ruan B Y, et al. Calculation of electrical potentials along a longitudinal section of a 2-D terrain[J]. Geophysics, 2002, 67(2):511-516.
|
[23] |
赵自豪, 李鹏慧. 露天矿边坡高密度电法勘探的数据前处理及应用[J]. 矿业工程研究, 2019, 34(3):53-59.
|
[23] |
Zhao Z H, Li P H. Research on datum pre-processing and application effect of ERI in slope of open mine[J]. Mineral Engineering Research, 2019, 34(3):53-59.
|
[1] |
CHEN Feng-Ying, WANG Xiang-Chun, SUN Jian, LI Can-Ping, REN Xiao-Qing. Comparative analysis of stereo and planar sources for slope breaks[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 461-469. |
[2] |
SONG Tao, BAO Yi, ZHAO Song, WU Jian-Feng, XU Yuan-Shun, TU Hai-Feng. Application of logging-resistivity joint exploration to 3D geological modeling for environmental investigation of a certain landfill site[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 272-280. |
|
|
|
|