|
|
Application of logging-resistivity joint exploration to 3D geological modeling for environmental investigation of a certain landfill site |
SONG Tao1,2( ), BAO Yi1,2, ZHAO Song1,2, WU Jian-Feng1,2, XU Yuan-Shun3, TU Hai-Feng3 |
1. Jiangsu Eastern China No. 814 Geophysical Exploration Co.,Ltd.,Nanjing 210007,China 2. Jiangsu Geological Bureau,Nanjing 210001,China 3. Nanjing Institute of Environmental Sciences,MEE,Nanjing 210042,China |
|
|
Abstract Geological exploration accuracy is a significant factor in the reliability of the comprehensive environmental survey outcomes of informal landfill sites.This study conducted drilling-high-density resistivity joint exploration of an informal landfill site using 754 high-density resistivity measurement points,12 parameter wells,and aerial surveys.Based on the binary analysis method of landfill layers and base,as well as the fuzzy mathematics theory,this study analyzed and interpreted the distribution characteristics of four layers of landfills,base,and leachate.Furthermore,this study established a 3D geological model of the landfill site and analyzed the spatial distribution of environmental geological elements.The drilling-derived verification results and the applicability evaluation demonstrate that the drilling-high-density resistivity joint exploration can be used to investigate informal landfill sites to obtain reliable geological results consistent with site characteristics.
|
Received: 17 March 2023
Published: 26 February 2024
|
|
|
|
|
|
Aerial image of the study area
|
|
Electrical sounding curve and histogram of borehole location
|
|
Geological-geophysical model diagram of ZK08 drilling forward modeling
|
钻井分层 | 样本数 | 极值范围 /(Ω·m) | 常见值范围 /(Ω·m) | 几何平均值 /(Ω·m) | 素填土 | 11 | 29.1~64.2 | 33.5~49.4 | 36.7 | 杂填土 | 8 | 9.3~33.8 | 10.7~17.1 | 13.7 | 建筑垃圾 | 13 | 70.3~160.2 | 96.7~146.8 | 135.3 | 生活垃圾 | 8 | 1.3~29.9 | 6.6~17.1 | 8.2 | 砂岩 | 19 | 28~266.7 | 49.2~135.4 | 88.78 |
|
Statistical of resistivity of forward model
|
|
Interpretation section of L4 line inversion processing a—2D resistivity inversion with terrain;b—gradient of inversion resistivity;c—wavelet detail calculation of bedrock resistivity;d—residual calculation of resistivity value of buried layer;e—interpretation profile
|
|
Contour map of L4 line membership calculation
|
|
The 3D visual geological model of the study area at an altitude of -25 m
|
|
Slice of a 3D visual geological model at an altitude of -25 m in the study area
|
方法 | 解决环境地质问题 | 探测效果与工作建议 | 钻探(参数井) | ①建立岩土及填埋物标准地质分层,为地球物理勘探方法提供定量约束参数; ②获取土工样品,提供密度、含水率等关键环境地质参数; ③概略了解基底起伏和空间填埋特征。 | ①探测效果:单点勘探结果可靠性高,平面控制精度取决于网度,受地形限制较多,勘探效率较低。 ②工作建议:基于地质勘查多期勘探的思路,部署多尺度测网,以常规区域规则网控制,重点区、初勘异常区加密控制为原则。 | 高密度电阻率法勘探 | ①采集填埋物及基底的视电阻率数据; ②抽取过井视电阻率测深曲线,结合钻孔数据建立地质—地球物理模型; ③提供填埋场二维电阻率断面,实现钻井、断面的点线结合,通过解释获取各填埋层、基底的基本分布特征。 | ①探测效果:横向分辨率主要取决于点距(一般为点距的二分之一),纵向分辨率与地质体电性差异和空间展布密切相关。 ②工作建议:建议垃圾填埋场的电法勘探网度点距5~10 m、线距5~20 m,首选规则网部署和三维采集;部署过井测点或测线。 | 井—电联合处理解释与三维建模 | ①建立高分辨率的填埋场三维地质模型; ②弱异常的薄填埋层和基底构造的细节提取; ③渗滤液模糊边界的提取; ④各填埋层的空间分布数据和体积参数。 | ①探测效果:井—电联合处理解释可提高成果可靠性,并且可以获取弱异常薄层及渗滤液的空间信息;三维地质模型可有效反映填埋场各地质体空间分布特征,提高勘探的整体可靠性。 ②工作建议:数据处理解释遵循异常由强到弱、界面由主到次的顺序;三维建模的基础分层数据优先权依次为钻孔分层、解释成果、电法提取、插值数据。 |
|
Applicability analysis of detection methods
|
[1] |
Mukherjee S, Mukhopadhyay S, Ali Hashim M, et al. Contemporary environmental issues of landfill leachate:Assessment and remedies[J]. Critical Reviews in Environmental Science and Technology, 2015. 45(5):472-590.
|
[2] |
余毅. 某大型非正规垃圾填埋场环境调查与风险管控方案[J]. 环境卫生工程, 2019, 27(3):72-75,80.
|
[2] |
Yu Y. Environmental investigation and risk control for a large informal landfill[J]. Environmental Sanitation Engineering, 2019, 27(3):72-75,80.
|
[3] |
何小艳, 李健, 刘劲松. 非正规垃圾填埋场土壤环境调查布点方法探讨[J]. 节能与环保, 2021(5):38-40.
|
[3] |
He X Y, Li J, Liu J S. Discussion on the method of soil environmental investigation in informal landfill[J]. Energy Conservation & Environmental Protection, 2021(5):38-40.
|
[4] |
白秀佳, 张红玉, 顾军, 等. 填埋场陈腐垃圾理化特性与资源化利用研究[J]. 环境工程, 2021, 39(2):116-120,124.
|
[4] |
Bai X J, Zhang H Y, Gu J, et al. Physico-chemical properties and resource utilization of stale refuse in landfill[J]. Environmental Engineering, 2021, 39(2):116-120,124.
|
[5] |
Jaskelevičius B, Lynikiene V. Investigation of influence of lapes landfill leachate on ground and surface water pollution with heavy metals[J]. Journal of Environmental Engineering and Landscape Management, 2009, 17(3),131-139.
|
[6] |
王迪, 尉斌, 闫永利, 等. 垃圾填埋场地下环境污染检测方法技术研究[J]. 地球物理学报, 2012, 55(6):2119.
|
[6] |
Wang D, Wei B, Yan Y L, et al. Study of detecting technology for landfill underground environmental pollution[J]. Chinese Journal of Geophysics, 2012, 55(6):2115-2119.
|
[7] |
Yang C Y, Yu C Y, Su S W. High resistivities associated with a newly formed LNAPL plume imaged by geoelectric techniques:A case study[J]. Journal of the Chinese Institute of Engineers, 2007, 30(1):53-62.
|
[8] |
周玉强. 高密度电阻率法在非正规垃圾填埋场调查中的应用研究[J]. 环境卫生工程, 2020, 28(3):60-65.
|
[8] |
Zhou Y Q. Research on the application of high-density resistivity method in informal landfill investigation[J]. Environmental Sanitation Engineering, 2020, 28(3):60-65.
|
[9] |
邹晨阳, 张双喜, 陈芳. 垃圾填埋场垂直防渗帷幕综合检测方法研究[J]. 环境工程, 2020, 38(9):194-199.
|
[9] |
Zou C Y, Zhang S X, Chen F. Discussion on comprehensive inspection methods of vertical cut-off curtain for city landfill sites[J]. Environmental Engineering, 2020, 38(9):194-199.
|
[10] |
Henderson R J. Urban geophysics:A review[J]. Exploration Geophysics, 1992, 23(4):531-542.
|
[11] |
姚纪华, 罗仕军, 宋文杰, 等. 综合物探在水库渗漏探测中的应用[J]. 物探与化探, 2020, 44(2):456-462.
|
[11] |
Yao J H, Luo S J, Song W J, et al. The application of comprehensive geophysical exploration method to leakage detection of a reservoir[J]. Geophysical and Geochemical Exploration, 2020, 44(2):456-462.
|
[12] |
Whiteley R J, Jewell C. Geophysical techniques in contaminated lands assessment:Do they deliver?[J]. Exploration Geophysics, 1992, 23(4):557-565.
|
[13] |
Wang X X, Chang Y B, Deng J Z, et al. 3D spatial distribution of old landfills and groundwater pollution from electrical resistivity tomography with fuzzy set theory[J]. Exploration Geophysics, 2022, 53(2):117-125.
|
[14] |
许艺煌, 黄真萍, 程志伟, 等. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2):435-440.
|
[14] |
Xu Y H, Huang Z P, Cheng Z W, et al. The application of high density electrical resistivity method to the investigation of the distribution of slag accumulation in hydropower station[J]. Geophysical and Geochemical Exploration, 2020, 44(2):435-440.
|
[15] |
刘国辉, 徐晶, 王猛, 等. 高密度电阻率法在垃圾填埋场渗漏检测中的应用[J]. 物探与化探, 2011, 35(5):680-683,691.
|
[15] |
Liu G H, Xu J, Wang M, et al. The application of high-density resistivity method to landfill leakage detection[J]. Geophysical and Geochemical Exploration, 2011, 35(5):680-683,691.
|
[16] |
刘海生, 侯胜利, 马万云, 等. 土壤与地下水污染的地球物理地球化学勘查[J]. 物探与化探, 2003, 27(4):307-311.
|
[16] |
Liu H S, Hou S L, Ma W Y, et al. Investigation of soil and groundwater contamination using geophysical and geochemical methods[J]. Geophysical and Geochemical Exploration, 2011,2003, 27(4):307-311.
|
[17] |
李望明, 吴述来, 易强, 等. 从高密度电阻率法数据中抽取电测深曲线进行解释[J]. 物探与化探, 2014, 38(3):587-590.
|
[17] |
Li W M, Wu S L, Yi Q, et al. The extraction of sounding curves from the data of high-density resistivity method for intepretation[J]. Geophysical and Geochemical Exploration, 2014, 38(3):587-590.
|
[18] |
郭秀军, 吴水娟, 马媛媛. 生活垃圾渗滤液污染砂土电阻率法量化检测研究[J]. 岩土工程学报, 2012, 34(11):2066-2071.
|
[18] |
Guo X J, Wu S J, Ma Y Y. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11):2066-2071.
|
[19] |
赵燕茹, 陈湘生, 黄力平, 等. 垃圾土电阻率特性试验研究[J]. 岩土工程学报, 2015, 37(12):2205-2216.
|
[19] |
Zhao Y R, Chen X S, Huang L P, et al. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12):2205-2216.
|
[20] |
刘栋, 张帆宇, 陈立, 等. 高密度电法在黄土滑坡结构探测与三维建模中的应用[J]. 地球物理学进展, 2022, 37(04):1742-1748.
|
[20] |
Liu D, Zhang F Y, Chen L, et al. Application of high-density electrical method in detecting and 3D modeling of loess landslide[J]. Progress in Geophysics, 2022, 37(4):1742-1748.
|
[21] |
邓小娟, 酆少英, 朱学申, 等. 利用二维活断层探测资料构建焦作地区浅层三维构造模型[J]. 大地测量与地球动力学, 2020, 40(7):682-687.
|
[21] |
Deng X J, Feng S Y, Zhu X S, et al. Using the 2D active fault seismic data to construct the shallow 3D structural model of Jiaozuo area[J]. Journal of Geodesy and Geodynamics, 2020, 40(7):682-687.
|
[22] |
雷传扬, 刘兆鑫, 文辉, 等. 基于多源数据和先验知识约束的复杂地质体三维建模研究[J]. 地质论评, 2022, 68(4):1393-1411.
|
[22] |
Lei C Y, Liu Z X, Wen H, et al. Research on 3D geological modeling of complex geological body based on multi-source data and prior geological knowledge[J]. Geological Review, 2022, 68(4):1393-1411.
|
[23] |
张源. 城市三维地质建模方法研究[J]. 矿山测量, 2021, 49(1):65-68,88.
|
[23] |
Zhang Y. Research on urban 3D geological modeling method[J]. Mine Surveying, 2021, 49(1):65-68,88.
|
[24] |
罗卫锋, 胡志方, 甘伏平, 等. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4):824-829.
|
[24] |
Luo W F, Hu Z F, Gan F P, et al. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in East China[J]. Geophysical and Geochemical Exploration, 2022, 46(4):824-829.
|
[25] |
严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.
|
[25] |
Yan J Y, Meng G X, Lyu Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.
|
[26] |
习龙, 倪玉根, 何健, 等. 基于GMS软件的海砂矿体三维地质建模和资源量估算[J]. 地质与勘探, 2022, 58(2):429-441.
|
[26] |
Xi L, Ni Y G, He J, et al. Three-dimensional geological modeling and resource estimation of the marine sand and gravel orebodies based on GMS[J]. Geology and Explorration, 2022, 58(2):429-441.
|
[27] |
龙慧, 谢兴隆, 李凤哲, 等. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4):808-815.
|
[27] |
Long H, Xie X L, Li F Z, et al. 2D seismic and high-density resistivity sounding reveal the shallow three-dimensional geological structure characteristics of Xiong'an New Area[J]. Geophysical and Geochemical Exploration, 2022, 46(4):808-815.
|
[1] |
ZHOU Jian-Bing, LUO Rui-Heng, HE Chang-Kun, PAN Xiao-Dong, ZHANG Shao-Min, PENG Cong. New geophysical evidence for karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 707-717. |
[2] |
REN Xi-Rong, LI Xin, ZHOU Zhi-Jie. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 540-546. |
|
|
|
|