|
|
Application of the stepwise amplitude consistency processing technique in splicing the large-scale profile of the Ordos Basin |
XU Lei-Ming1,2( ), LI Fei1,2, WANG Jian-Hua3, LI Mei1,2, CAO Yong-Liang1,2, WANG Hao-Kun1,2 |
1. National Engineering Laboratory of Low-permeability Oil & Gas Exploration and Development,Xi'an 710018,China 2. Exploration and Development Research Institute,SINOPEC Changqing Oilfield Branch,Xi'an 710018,China 3. Northwest Branch of Exploration and Development Research Institute,SINOPEC,Lanzhou 730020,China |
|
|
Abstract The Ordos Basin boasts abundant deep oil and gas resources.Hence,establishing the tectonic framework of the entire basin based on high-precision seismic imaging processing and structural interpretation holds critical significance.This study investigated the amplitude consistency problem in processing the large-scale 2D spliced profile of the basin. It employed a six-step amplitude consistency processing flow for amplitude preservation,involving energy adjustment between shots,spherical diffusion compensation,surface-consistent amplitude compensation,frequency-division amplitude compensation,and amplitude normalization based on the fold number/offset distribution.The processing flow effectively eliminated the amplitude inconsistency caused by the differences of survey lines in surface excitation and receiving conditions,acquisition methods,observation systems,and instruments in different years.The obtained basin-scale 2D spliced profile provided a reliable data basis for establishing the tectonic framework of the basin,clarifying the tectonic patterns,fault characteristics,and stratigraphic distributions of the fourth and third members of the Ordovician Majiagou Formation and the underlying strata,and predicting the distribution of paleo-uplifts.Moreover,the technique used in this study serves as a reference for processing seismic data of other complex areas.
|
Received: 15 February 2024
Published: 08 January 2025
|
|
|
|
|
测线名 | 采集年度 | 测线类型 | 激发线 | 接收线 | 排列长度/m | 道数 | 道距/m | 长度/km | Line1 | 2016 | 高密度线 | 1 | 2 | 4805 | 1920 | 10 | 32.470 | Line2 | 2009 | 直测线 | 1 | 2 | 5050 | 1008 | 20 | 49.456 | Line3 | 2008 | 变观数字线 | 1 | 1 | 5050 | 216 | 5 | 72.340 | Line4 | 2005 | 黄土直线 | 1 | 2 | 5100 | 816 | 25 | 54.668 | Line5 | 2017 | 宽线 | 2 | 2 | 5310 | 1064 | 20 | 110.080 | Line6 | 2003 | 宽线 | 2 | 2 | 3000 | 480 | 25 | 39.888 | Line7 | 1998 | 沟中弯线 | 1 | 1 | 3000 | 240 | 25 | 36.782 | Line8 | 1997 | 沟中弯线 | 1 | 1 | 3000 | 240 | 25 | 38.274 | Line9 | 2011 | 黄土直线 | 1 | 1 | 3600 | 720 | 10 | 20.200 | Line10 | 1998 | 沟中弯线 | 1 | 1 | 3000 | 240 | 25 | 26.037 | Line11 | 2003 | 宽线 | 1 | 3 | 2410 | 576 | 25 | 29.464 | Line12 | 2015 | 非纵测线 | 2 | 4 | 5590 | 2232 | 20 | 72.800 |
|
Acquisition parameters of large section L1
|
|
Near surface model for static correction and inverse modeling of 2D multi line pseudo 3D continuous tomography(section L1)
|
|
Amplitude consistency processing of six-step method
|
|
Analysis of the effect before and after frequency division amplitude compensation(NMO-corrected CMP gather and energy analysis) a—NMO-corrected CMP gather before frequency-division amplitude;b—NMO-corrected CMP gather after frequency-division amplitude;c—energy analysis corresponding to figure a;d—energy analysis corresponding to figure b
|
|
Analysis of the effect before and after normalization processing based on fold(section L1) a—fold of section L1;b—section before normalization processing based on fold;c—section after normalization processing based on fold
|
|
Comparison of pre-stack time migration section L1 before and after amplitude normalization based on fold a—pre-stack time migration section L1 before amplitude normalization based on fold;b—pre-stack time migration section L1 after amplitude normalization based on fold
|
|
Comparison of CMP gather before and after regularization within the offset group a—CMP gather before regularization within the offset group;b—CMP gather after regularization within the offset group
|
|
Comparison of pre-stack time migration section L1 before and after amplitude normalization based on offset distribution a—pre-stack time migration section before amplitude normalization based on offset distribution;b—pre-stack time migration section after amplitude normalization based on offset distribution
|
|
Comparison and analysis of large section L1 before and after splicing processing a—large section L1 before splicing processing;b—large section L1 after splicing processing
|
|
Local alignment and analysis of large section L3 before and after splicing processing a—large section L3 before splicing processing;b—large section L3 after splicing processing
|
|
Detailed outline of the favorable reservoir distribution section of the deep Ordovician dune beach body in the large section L1
|
[1] |
王西文, 雍学善, 王宇超, 等. 面对重点勘探领域的地震技术研究和应用实效[J]. 岩性油气藏, 2010, 22(3):83-90.
|
[1] |
Wang X W, Yong X S, Wang Y C, et al. Study and application of seismic technologies for key exploration field[J]. Lithologic Reservoirs, 2010, 22(3):83-90.
|
[2] |
熊翥. 复杂地区地震数据处理思路[M]. 北京: 石油工业出版社, 2002.
|
[2] |
Xiong Z. Thoughts on seismic data processing in complex areas[M]. Beijing: Petroleum Industry Press, 2002.
|
[3] |
芮拥军. 地震资料处理中相对保幅性讨论[J]. 物探与化探, 2011, 35(3):371-374.
|
[3] |
Rui Y J. An analysis of relative amplitude-preservation in seismic data processing[J]. Geophysical and Geochemical Exploration, 2011, 35(3):371-374.
|
[4] |
苏世龙, 贺振华, 戴晓云, 等. 岩性油气藏地震保幅处理技术及其应用——以东部某油田岩性气藏为例[J]. 物探与化探, 2015, 39(1):54-59.
|
[4] |
Su S L, He Z H, Dai X Y, et al. The application of relative amplitude compensation technology to lithologic reservoir exploration:A case study of lithologic gas reservoir in an oilfield of Eastern China[J]. Geophysical and Geochemical Exploration, 2015, 39(1):54-59.
|
[5] |
周能丰, 李青. 振幅补偿与保幅处理探讨[J]. 小型油气藏, 2005, 10(4):23-25.
|
[5] |
Zhou N F, Li Q. Discussion on amplitude compensation and amplitude preservation processing[J]. Small Hydrocarbon Reservoirs, 2005, 10(4):23-25.
|
[6] |
吕小伟. 几项地震资料处理技术的保幅性分析[J]. 物探与化探, 2012, 36(5):617-622.
|
[6] |
Lyu X W. Amplitude preservation analysis of several seismic data processing techniques[J]. Geophysical and Geochemical Exploration, 2012, 36(5):617-622.
|
[7] |
何新贞, 尚新民, 王常波, 等. 复杂地表及地下地质条件下地震资料处理中的若干重要环节[J]. 物探与化探, 2004, 28(5):453-456.
|
[7] |
He X Z, Shang X M, Wang C B, et al. Some important links in seismic data processing under complex surface and underground geological conditions[J]. Geophysical and Geochemical Exploration, 2004, 28(5):453-456.
|
[8] |
吴志强, 曾天玖, 肖国林, 等. 南黄海低信噪比地震资料处理技术探索[J]. 物探与化探, 2014, 38(5):1029-1037.
|
[8] |
Wu Z Q, Zeng T J, Xiao G L, et al. A tentative discussion on low SNR seismic data processing technique for marine carbonate in the South Yellow Sea Area[J]. Geophysical and Geochemical Exploration, 2014, 38(5):1029-1037.
|
[9] |
刘玉萍, 李丽青, 张宝金. 基于希尔伯特变换的振幅增益控制方法[J]. 物探与化探, 2020, 44(4):790-795.
|
[9] |
Liu Y P, Li L Q, Zhang B J. An amplitude gain control method based on Hilbert transform[J]. Geophysical and Geochemical Exploration, 2020, 44(4):790-795.
|
[10] |
王正和, 崔永福, 向东. 井控处理中的真振幅恢复与Q补偿方法及应用[J]. 物探与化探, 2008, 32(4):434-437.
|
[10] |
Wang Z H, Cui Y F, Xiang D. The method and application of true amplitute recovery and q-compensation in well-control processing[J]. Geophysical and Geochemical Exploration, 2008, 32(4):434-437.
|
[11] |
王珊, 于承业, 王云专, 等. 稳定有效的反Q滤波方法[J]. 物探与化探, 2009, 33(6):696-699.
|
[11] |
Wang S, Yu C Y, Wang Y Z, et al. Researches on stabilized and effective inverse Q filtering[J]. Geophysical and Geochemical Exploration, 2009, 33(6):696-699.
|
[12] |
杨小慧, 陆红梅, 王荣娟, 等. 强衰减条件下Q值修正[J]. 物探与化探, 2015, 39(5):1069-1073.
|
[12] |
Yang X H, Lu H M, Wang R J, et al. Q modification under the situation of strong attenuation[J]. Geophysical and Geochemical Exploration, 2015, 39(5):1069-1073.
|
[13] |
邓儒炳, 阎建国, 陈琪, 等. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3):702-711.
|
[13] |
Deng R B, Yan J G, Chen Q, et al. A new time-varying gain limits inverse Q filtering with the continuous compensation function[J]. Geophysical and Geochemical Exploration, 2021, 45(3):702-711.
|
[14] |
吴清岭, 李来林, 陈斌, 等. 基于覆盖次数的叠前振幅归一化处理在大庆油田的应用[J]. 大庆石油地质与开发, 2008, 27(2):121-123,127.
|
[14] |
Wu Q L, Li L L, Chen B, et al. Prestack amplitude normalization processing based on fold and its application to Daqing Oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(2):121-123,127.
|
[15] |
赵桂玲, 陈海峰, 高现俊, 等. 叠前偏移能量一致性处理方法及应用[J]. 地球物理学进展, 2016, 31(3):1295-1299.
|
[15] |
Zhao G L, Chen H F, Gao X J, et al. Prestack migration energy consistency processing method and application[J]. Progress in Geophysics, 2016, 31(3):1295-1299.
|
[16] |
于承业, 周志才. 利用双井微测井资料估算近地表Q值[J]. 石油地球物理勘探, 2011, 46(1):89-92,164,171-172.
|
[16] |
Yu C Y, Zhou Z C. Estimation of near surface Q value based on the datasets of the uphole survey in double hole[J]. Oil Geophysical Prospecting, 2011, 46(1):89-92,164,171-172.
|
[17] |
韩淼, 白忠凯, 张林, 等. 塔里木盆地深层地震大剖面拼接处理关键技术应用研究进展[J]. 中国矿业, 2017, 26(S2):415-422,427.
|
[17] |
Han M, Bai Z K, Zhang L, et al. Review of key technologies used in deep seismic data joint processing in Tarim Basin[J]. China Mining Magazine, 2017, 26(S2):415-422,427.
|
[18] |
仲伯军, 印兴耀. 复杂地区三维地震资料拼接中的一致性处理技术[J]. 石油物探, 2008, 47(4):393-397.
|
[18] |
Zhong B J, Yin X Y. Consistent processing technology for splicing 3-D seismic data in complex area[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):393-397.
|
[19] |
李敏杰, 刘玉增, 孟祥顺, 等. 陕北富县黄土塬区三维地震资料处理技术[J]. 石油物探, 2012, 51(3):285-291,211.
|
[19] |
Li M J, Liu Y Z, Meng X S, et al. 3D seismic data processing technique for loess tableland area in Fuxian,North Shanxi Province[J]. Geophysical Prospecting for Petroleum, 2012, 51(3):285-291,211.
|
[20] |
李生杰, 施行觉, 郑鸿明, 等. 复杂地表条件反射振幅一致性校正[J]. 地球物理学报, 2002, 45(6):862-869.
|
[20] |
Li S J, Shi X J, Zheng H M, et al. The consistent correction of seismic amplitude in complicated surface area[J]. Chinese Journal of Geophysics, 2002, 45(6):862-869.
|
[21] |
王伟, 刘振宽, 张品, 等. 三维地震资料连片中信噪比一致性处理技术探讨[J]. 石油地球物理勘探, 2022, 57(S1):65-69,9.
|
[21] |
Wang W, Liu Z K, Zhang P, et al. Discussion on consistency processing technology of signal-to-noise ratio in three-dimensional seismic data contiguous[J]. Oil Geophysical Prospecting, 2022, 57(S1):65-69,9.
|
[22] |
陈可洋, 吴清岭, 李来林, 等. 松辽盆地三维地震资料连片处理关键技术及其应用效果分析[J]. 岩性油气藏, 2012, 24(2):87-91,116.
|
[22] |
Chen K Y, Wu Q L, Li L L, et al. Key technologies of 3D seismic data multi-survey joint processing and its application effect analysis in Songliao Basin[J]. Lithologic Reservoirs, 2012, 24(2):87-91,116.
|
[23] |
范旭, 谭佳, 张绪健, 等. 时频空间域振幅补偿方法及其应用[J]. 新疆石油地质, 2012, 33(5):592-594.
|
[23] |
Fan X, Tan J, Zhang X J, et al. Amplitude compensation of time-frequency and space domain:Method and application[J]. Xinjiang Petroleum Geology, 2012, 33(5):592-594.
|
|
|
|