|
|
Impacts of drone noise on semi-airborne transient electromagnetic data |
WANG Zhi-Hong1( ), ZHANG Nuo-Ya2,3, HU Shan-Shan2,3, ZHENG Zi-Qiang2,3, LIU Yu-Chao2,3, ZHOU Zheng2,3, SUN Huai-Feng2,3( ) |
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China 2. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China 3. Laboratory of Earth Electromagnetic Exploration, Shandong University, Jinan 250061, China |
|
|
Abstract As a semi-airbone transient electromagnetic (TEM) platform, drones inherently generate electromagnetic signals that may interfere with the collected transient electromagnetic data. This study investigated the impacts of drone noise on the collected data. Through outdoor experiments and systematic performance testing, this study analyzed the impacts of drone noise under varying rotor speeds, suspension lengths, flight height, and flight speeds. Accordingly, this study proposed methods for suppressing drone noise, such as determining the optimal suspension length and incorporating shielding layers. The study was conducted using the KWT-X8L-25 octocopter drones, but the research methodology and philosophy are also applicable to other drone models, thus serving as a reference for the selection of semi-airborne TEM platforms.
|
Received: 19 December 2023
Published: 08 January 2025
|
|
|
|
|
|
The main components of the SATEM receiving system
|
|
The receiver and the receiving coil
|
参数 | 指标 | 采样类别 | 连续采集 | 采样速度/位数 | 256 ksps/24bit | 同步方式 | 秒脉冲PPS | 接收线圈面积 | 56 m2 | 续航时间 | >8 h | SD卡存储容量 | 32 GB | 系统带宽 | ≥40 kHz | USB传输速度 | 平均1 MB/s | 姿态/GNSS采样率 | 5 Hz | 输入动态范围 | >60 dB |
|
Specifications of receiving system
|
|
KWT-X8L-25 UAV
|
项目 | 参数指标 | 最大翼展 | 3180 mm±20 mm | 空机质量 | 19 kg±0.5 kg | 空载起飞质量 | 35 kg±0.5 kg | 推荐最大起飞质量 | ≤60.5 kg | 任务载重 | ≤25 kg | 空载悬停时间 | ≥60 min(海拔1000 m以下,25 ℃) | 满载悬停时间 | ≥25 min(海拔1000 m以下,25 ℃) | 最大上升速度 | 4 m/s | 最大下降速度 | 2 m/s | 最大飞行速度 | 15 m/s | 相对爬升高度 | 4000 m(平原) | 工作海拔 | 5000 m(相对爬升2000 m) | 抗风能力 | 7级风 |
|
Specifications of KWT-X8L-25 UAV
|
|
Semi-airborne TEM receiving system integrated with UAV
|
|
The inner noise test results of the receiving system
|
|
Raw data (top) and spectrum (bottom) of environmental background noise
|
|
Raw data and spectrum at different speeds
|
|
Raw data (a) and its spectrum (b) of ground reference signal
|
|
Spectrum of received EM data with different hanging heights
|
频点 | 吊挂长度 | 6 m | 8 m | 10 m | 12 m | 22 kHz | 28.36 | 2.924 | 6.838 | 3.904 | 45 kHz | 9.082 | 7.331 | — | — |
|
High-frequency signal amplitudes of UAV with four kinds of hanging lengths
|
|
Geographical location of the studied area and survey design
|
|
Received raw EM data (left) and stacked results (right) at different flight altitudes
|
|
Receiving results in vertical hover mode
|
|
Received raw EM data (left) and stacked results (right) at different flight speeds
|
[1] |
林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报, 2021, 64(9):2995-3004.
|
[1] |
Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics, 2021, 64(9):2995-3004.
|
[2] |
张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017, 32(4):1735-1741.
|
[2] |
Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017, 32(4):1735-1741.
|
[3] |
Nabighian M N. Electromagnetic methods in applied geophysics[M]. Tulsa,USA: SEG Books, 1988:217-231.
|
[4] |
Elliott P. New airborne electromagnetic method provides fast deep-target data turnaround[J]. The Leading Edge, 1996, 15(4):309-310.
|
[5] |
Smith R S, Annan A P, McGowan P D. A comparison of data from airborne,semi-airborne,and ground electromagnetic systems[J]. Geophysics, 2001, 66(5):1379-1385.
|
[6] |
Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne transient EM (GREATEM)[J]. Exploration Geophysics, 1998, 29(1/2):61-64.
|
[7] |
Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai,north-eastern Japan[J]. Exploration Geophysics, 2009, 40(1):1-7.
|
[8] |
张良. 半航空瞬变电磁接收机研制[D]. 成都: 成都理工大学, 2017.
|
[8] |
Zhang L. Development of semi-aeronautical transient electromagnetic receiver[D]. Chengdu: Chengdu University of Technology, 2017.
|
[9] |
Wu X, Xue G Q, Fang G Y, et al. The development and applications of the semi-airborne electromagnetic system in China[J]. IEEE Access, 2019, 7:104956-104966.
|
[10] |
嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11):3640-3650.
|
[10] |
Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics, 2013, 56(11):3640-3650.
|
[11] |
符磊, 林君, 王言章, 等. 磁通负反馈空心线圈传感器特性和噪声研究[J]. 仪器仪表学报, 2013, 34(6):113-119.
|
[11] |
Fu L, Lin J, Wang Y Z, et al. Research on characteristic and noise of magnetic flux negative feedback air coil sensor[J]. Chinese Journal of Scientific Instrument, 2013, 34(6):113-119.
|
[12] |
张雨默, 袁贵扬, 黎东升, 等. 基于STM32的时域电磁标准信号源研制[J]. 实验室研究与探索, 2015, 34(9):62-65,69.
|
[12] |
Zhang Y M, Yuan G Y, Li D S, et al. The development of transient electromagnetic standard signal source based on ARM[J]. Research and Exploration in Laboratory, 2015, 34(9):62-65,69.
|
[13] |
李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都: 成都理工大学, 2015.
|
[13] |
Li L L. Research on key technologies of semi-aeronautical transient electromagnetic transmitter[D]. Chengdu: Chengdu University of Technology, 2015.
|
[14] |
苏发. 半航空时间域瞬变电磁接收系统设计[D]. 长春: 吉林大学, 2016.
|
[14] |
Su F. Design of semi-aeronautical time domain transient electromagnetic receiving system[D]. Changchun: Jilin University, 2016.
|
[15] |
Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017, 32(5):2222-2229.
|
[16] |
李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9):3145-3152.
|
[16] |
Li S Y, Lin J, Yang G H, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013, 56(9):3145-3152.
|
[17] |
Wang Y, Ji Y J, Li S Y, et al. A wavelet-based baseline drift correction method for grounded electrical source airborne transient electromagnetic signals[J]. Exploration Geophysics, 2013, 44(4):229-237.
|
[18] |
陈斌, 陆从德, 刘光鼎. 基于核主成分分析的时间域航空电磁去噪方法[J]. 地球物理学报, 2014, 57(1):103-111.
|
[18] |
Chen B, Lu C D, Liu G D. A denoising method based on kernel principal component analysis for airborne time-domain electromagnetic data[J]. Chinese Journal of Geophysics, 2014, 57(1):103-111.
|
[19] |
Li D S, Wang Y, Lin J, et al. Electromagnetic noise reduction in grounded electrical-source airborne transient electromagnetic signal using a stationarywavelet-based denoising algorithm[J]. Near Surface Geophysics, 2017, 15(2):163-173.
|
[20] |
Ji Y J, Wu Q, Wang Y, et al. Noise reduction of grounded electrical source airborne transient electromagnetic data using an exponential fitting-adaptive Kalman filter[J]. Exploration Geophysics, 2018, 49(3):243-252.
|
[21] |
Ji Y J, Li D S, Yu M M, et al. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal[J]. Journal of Applied Geophysics, 2016, 128:1-7.
|
[22] |
Shi Z Y, Liu L H, Xiao P, et al. Applying transmission line theory to study the transmitting turn-off current in a long grounded wire[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(10):5112-5122.
|
[23] |
陈成栋. 半航空瞬变电磁数据采集设计和数据校正研究[D]. 济南: 山东大学, 2021.
|
[23] |
Chen C D. Research on data acquisition design and data correction of semi-airborne transient electromagnetic data[D]. Jinan: Shandong University, 2021.
|
[24] |
Sun H F, Zhang N Y, Li D R, et al. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas[J]. Tunnelling and Underground Space Technology, 2023, 132:104893.
|
[25] |
Liu R, Sun H F, Liu D, et al. A joint application of semi-airborne and in-tunnel geophysical survey in complex limestone geology[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(6):226.
|
[1] |
CHEN Wei-Ying, XUE Guo-Qiang, LI Hai. Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1169-1175. |
[2] |
JIA Bo, ZHANG Fu-Ming, ZHANG Li-Jun, LIU Hao-Hao, GUO Liang-Liang, SONG Wei, ZHANG Chao-Yang, HE Hai-Long, WANG Gang. Three-dimensional numerical simulation of grounded-source transient electromagnetic responses in roadways[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1185-1192. |
|
|
|
|