Integrated application of alteration information from Landsat8-OLI remote sensing images and geochemical singularity anomaly information for the Shuiyuesi area of western Hubei Province
BAO Qi-Bing1,2(), YANG Peng3(), ZHOU Zhou3, LEI Li3, XIA Qing-Lin2, LIU Yin3, GONG Yin3, LU Jin-Xiang3
1. Cores and Samples Centre of Natural Resources, China Geological Survey, Langfang 065201, China 2. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430084, China 3. The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
Prolonged intense magmatic-hydrothermal activity and regional metamorphism in western Hubei Province created favorable conditions for the formation of gold deposits. As the Shuiyuesi area witnessed a thorough exploration of surface and outcrop mines, the prospecting of gold deposits in the area has shifted to overburden and deep zones in recent years. However, the prospecting in the Shuiyuesi area becomes gradually complicated due to significant topographic relief, high vegetation coverage, and severe terrain cutting. Hence, efficient prospecting approaches are urgently needed to achieve breakthroughs in ore prospecting. Through geological survey and analysis, this study statistically analyzed the alteration types intimately associated with gold mineralization in nine gold veins of the Shuiyuesi area. It extracted alteration information from Landsat8-OLI remote sensing images using methods like numerical operations, and weak anomaly information of element distribution using methods like multivariate statistical analysis and local singularity analysis. Employing the data integration technology, it integrated the alteration anomaly information from remote sensing images and the singularity anomaly information. Based on comprehensive information, such as geological settings for mineralization and metallogenic regularity, this study identified 19 metallogenic prospect areas and new anomaly clues in the Yangjiatang-Caishenmiao area. The novel approach combining singularity analysis and data integration enhanced the spatial resolution of geochemical anomalies, the spatial details of surface features, and weak anomaly information associated with gold mineralization, thus enabling rapid and efficient identification and extraction of comprehensive anomalies and prediction of metallogenic prospect areas.
Qi-Bing BAO,Peng YANG,Zhou ZHOU, et al. Integrated application of alteration information from Landsat8-OLI remote sensing images and geochemical singularity anomaly information for the Shuiyuesi area of western Hubei Province[J]. Geophysical and Geochemical Exploration,
2024, 48(5): 1302-1312.
Spectral curves of typical minerals containing OH-, iron ions, and C(modified according to USGS spectral library) a—spectral curve of minerals containing OH-;b—spectral curve of minerals containing iron ions;c—spectral curve of minerals containing
Enhanced image of Landsat8-OLI for alteration information in the research area(OLI6/OLI7)
变量
F1
F2
Ag
0.429
0.594
Au
0.819
0.083
Hg
0.793
0.125
Pb
0.35
0.694
Zn
-0.126
0.857
Cu
0.856
0.201
因子方差贡献/%
46.795
19.643
累积方差贡献/%
46.795
66.437
Orthogonal rotation factor load matrix
Au element geochemical anomaly map a—the IDW interpolation results of Au element; b—the singularity analysis results of Au element
Au-Cu-Hg element combination geochemical anomaly map a—the IDW interpolation results of Au-Cu-Hg element combination; b—the singularity analysis results of Au-Cu-Hg element combination
Basic principle of geochemical layer and remote sensing Image fusion technology (modified according to Ding[37])
The fusion results of geochemical data and remote sensing data in Shuiyuesi research area a—the fusion result of Au element IDW layer and remote sensing alteration image;b—the fusion results of Au element singularity index layer and remote sensing alteration images
Enlarged comparison map of each layer in the area around Yangjiatang and Caishenmiao (green circle represents the location of the gold mine) a—the result of zooming in on the local area of the Au element IDW layer; b—the local magnification result after fusing the IDW layer of Au element with the enhanced layer of remote sensing image alteration information;c—the locally magnified result of the fusion of Au element singularity index layer and remote sensing image alteration information enhancement laye
类别
成矿 类型
成矿 强度
成矿 条件
金矿床分布
找矿 潜力
交通 条件
A
多
强
十分有利
有规模较大金矿
大
好
B
较多
较强
有利
有小型金矿点
较大
好
C
一般
中等
较有利
有矿化线索
一般
较好
Classification principles of Shuiyuesi research area
Distribution map of metallogenic prospective areas in the Shuiyuesi research area
[1]
赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4):1-5.
[1]
Zhao P D. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 2019, 26(4):1-5.
[2]
赵鹏大, 陈永清. 数字地质与数字矿产勘查[J]. 地学前缘, 2021, 28(3):1-5.
[2]
Zhao P D, Chen Y Q. Digital geology and quantitative mineral exploration[J]. Earth Science Frontiers, 2021, 28(3):1-5.
Chen Y Q, Zhao P D. Extraction and integration of geoanomalies associated with mineralization[J]. Earth Science, 2009, 34(2):325-335.
[4]
Haghighat M, Abdel-Mottaleb M, Alhalabi W. Discriminant correlation analysis:Real-time feature level fusion for multimodal biometric recognition[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9):1984-1996.
Meng X F, Du Z J. Research on the big data fusion:Issues and challenges[J]. Journal of Computer Research and Development, 2016, 53(2):229-246.
[6]
Daily M I, Farr T, Elachi C, et al. Geologic interpretation from composited radar and Landsat imagery[J]. Photogrammetric Engineering &Remote Sensing, 1979,45:1109-1116.
[7]
Waltz E, Llinas J. Multisensor data fusion[M]. Boston:ArtechHouse,1990.
[8]
Hall D L. Mathematical techniques in multisensor data fusion[M]. Boston: Artech House, Inc., 2004.
Dong Z R, Shen L. The main algorithm of the integrated command system intelligence center-trajectory processing methods in multi-target dense environments[R]. Lianyungang: Foreign Ship Technology-Fire Control Technology Editorial Room,1985.
[10]
康耀红. 数据融合理论与应用[M]. 西安: 西安电子科技大学出版社,1997.
[10]
Kang Y H. Theory and application of data fusion[M]. Xi'an: Xidian University Press,1997.
Liu F J, Wu X C, Sun H S, et al. Application of fusion techniques of remote sensing and geochemical data in gold ore exploration[J]. Geology and Exploration, 2007, 43(3):74-77.
Zhao J M, Yang C B, Han L G, et al. The inversion of muscovite content based on spectral absorption characteristics of rocks[J]. Spectroscopy and Spectral Analysis, 2023, 43(1):220-224.
Jiang L J, Xing L X, Liang Y H, et al. Anomalies information extraction from geochemical dataand remote sensing fusion[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(3):932-936.
Chen W, Zhu M M, Cao X F, et al. Application of the remote sensing and geochemical informationfusion method in the prediction of prospecting target in thedapinliang area,Shanshan County,Xinjiang[J]. Geological Science and Technology Information, 2016, 35(6):184-193.
Jing L H, Ding H F, Cheng Q M, et al. A method for tracking the source of geochemical element anomalies based on remote sensing alteration information[P]. Chinese patent,201810049938.0,2018-01-18.
[17]
Wang Z Y, Zuo R G, Jing L H. Fusion of geochemical and remote-sensing data for lithological mapping using random forest metric learning[J]. Mathematical Geosciences, 2021, 53(6):1125-1145.
Huang L S, Li X B, Jing L H, et al. Integration of rapid delineation and comprehensive evaluation technology of mineral resources prospect area in alpine mountainous area based on remote sensing[J]. Geology in China, 2022, 49(1):253-270.
[19]
Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2):109-130.
[20]
Cheng Q, Xu Y, Grunsky E. Multifractal power spectrum-area method for geochemical anomaly separation[J]. Natural Resources Research, 2000, 9(1):43-51.
[21]
Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu,Yunnan Province,China[J]. Ore Geology Reviews, 2007, 32(1-2):314-324.
Cheng Q M. Multifractal and geostatistic methods for characterizing local structure and singularity properties of exploration geochemical anomalies[J]. Earth Science, 2001, 26(2):161-166.
Cheng Q M. The application of complexity-nonlinear theory to ore prognosis:The singularity theory-generalized self-similarity-fractal lineage multiple fractal theory and its application[J]. Mineral Deposits, 2006, 25(S1):463-466.
Chen Z J. Multifractal local singularity analysis method and its application in mineralresourcesinformationextraction[D]. Wuhan: China University of Geosciences(Wuhan), 2007.
Yi C S. Lithology of graphite-bearing strata in the northern part of Huangling fault dome core in Yichang Area,Hubei Province[J]. China Non-metallic Minerals Industry, 2017(4):46-49.
Zhou B, Ren B Y, Sun T, et al. Geological characteristics and mineralization of liuchongping gold deposit in Baokang County,Hubei Province[J]. Resources Environment & Engineering, 2018, 32(4):533-538.
Xiang M, Hu S H, Nie K H, et al. Geochemical characteristics and genesis of gold deposits in the core ofHuangling anticline,western Hubei[J]. Resources Environment & Engineering, 2021, 35(6):787-793,874.
Liu J P, Li A Z, Zhu C H, et al. Geological characteristics and prospectingprospect of Zhoujiawan graphite deposit in Xingshan,Hubei Province[J]. Western Resources, 2022(1):146-149.
Xiong C Y, Wei C S, Jin G F, et al. Basic characteristics and metallogenetic regularity of the gold ore deposits in the middle core of Huangling anticline,western Hubei Province[J]. Geology and Mineral Resources of South China, 1998, 14(1):32-40.
Xiong C Y, Wei C S, Jin G F, et al. Pre-sinian paleostructural framework and major geological events in the Huangling anticline,western Hubei[J]. Journal of Geomechanics, 2004, 10(2):97-112.
Zhang Y J, Yang J M, Chen W. A study of the method for extractioh of alteration anomalies from the ETM+(TM) data and its application:Geologic basis and spectral precondition[J]. Remote Sensing for Natural Resources, 2002, 14(4):30-36.
Zhang Y, Wang Y N, Chen L, et al. Forest vegetation information computer automatic extraction base on landsat-8[J]. Chinese Agricultural Science Bulletin, 2014, 30(28):61-66.
[33]
Zuo R G. Machine learning of mineralization-related geochemical anomalies:A review of potential methods[J]. Natural Resources Research, 2017, 26(4):457-464.
[34]
Zuo R G, Xia Q L, Zhang D J. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013,33:165-172.
Zhang T B. Extractionof alteration information from remote sensing imagesand application of multi-source data fusion inmetallogenic prediction in Xietongmen County copper-gold belt,Tibet[D]. Chengdu: Chengdu University of Technology, 2006.
Xiang M, Zhang Q X, Mou Z Y, et al. Fluid inclusion characteristics and metallogenic mechanism of Baizhuping gold deposit in Yichang City,Hubei Province[J]. Resources Environment & Engineering, 2019, 33(4):460-463,529.
Cao L, Zhang L G, Zhou Y, et al. Genesis of baizhuping gold deposit in Yichang,Hubei:Evidence from fluid inclusion and H-O-S-Pb isotope geochemistry[J]. South China Geology, 2023(2):387-401.
[1]
ZHAO Hong-Yan, LI Cong, CHANG Qiu-Ling, GUAN Xiao-Rong, DU Cheng-Yuan, CHEN Xin, WANG Jing. Data integration based on MapGIS and ASCII code files[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 804-811.