|
|
Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China |
WAN Tai-Ping1( ), ZHANG Li2, LIU Han-Liang3 |
1. Natural Resources Survey Institute of Heilongjiang Province, Harbin 150036, China 2. Heilongjiang Institute of Geophysical and Geochemical Exploration, Harbin 150036, China 3. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China |
|
|
Abstract The Eerguna block with metallogenic geological conditions is an important metallogenic area in Heilongjiang Province. Globally, China boasts the richest resource of antimony. However, the high mining intensity in recent years imposes huge challenges to this resource advantage of China. In this context, it is necessary to ascertain the geochemical characteristics of antimony in the Eerguna block. Based on the data of the 1∶250 000 stream sediment survey in the Eerguna block, this study explored the geochemical parameters of antimony in different tectonic units and the regional geochemical anomalies of this block. The results show that the study area has median and average concentrations of antimony of 0.33×10-6 and 0.55×10-6, respectively. The Mohe foreland basin is rich in antimony, with median and average concentrations of antimony higher than those of the study area. Furthermore, zones with high and extremely high antimony concentrations in the study area are distributed primarily in the Mohe foreland basin. Based on the 85% cumulative percentage, this study determined 66 geochemical anomalies of antimony, among which two reach the scale of geochemical provinces. Furthermore, this study identified significant geochemical anomalies of antimony in the discovered gold, antimony, and plumbum deposits or ore occurrences (mineralization points). Based on the spatial distributions of geochemical anomalies and metallogenic geological conditions of antimony, arsenic, and gold, this study delineated three metallogenic prospect areas of antimony: the Beijicun-Sanlianshan metallogenic prospect area, the Wangsushan-Daling metallogenic prospect area, and the Baikalushan-Huzhong metallogenic prospect area. In addition, the geochemical anomalies and metallogenic prospect areas for antimony, arsenic, and gold provide important areas for searching for sulfide deposits such as gold, antimony, and plumbum ones in the study area.
|
Received: 06 September 2022
Published: 27 October 2023
|
|
|
|
|
|
Simplified geotectonic zoning map in Erguna massif Ⅲ-1—Mohe foreland basin;Ⅲ-2—Fukeshan-Xinghua metamorphic basement complex;Ⅲ-3—Huanyu-Xinlin ophiolitic melange; Ⅲ-4—Tahe-Cuigang magma arc
|
|
Antimony histogram of stream sediments collected from the Erguna massif
|
统计单元 | 样品数 | 最小值 | 2.5% 分位数 | 25% 分位数 | 平均值 | 50% 分位数 | 75% 分位数 | 97.5% 分位数 | 最大值 | 标准离差 | RCC | 全区 | 13543 | 0.03 | 0.09 | 0.19 | 0.55 | 0.33 | 0.52 | 2.30 | 117.66 | 1.67 | | Ⅲ-1 | 3449 | 0.05 | 0.13 | 0.28 | 0.88 | 0.46 | 0.85 | 4.46 | 54.37 | 1.81 | 1.39 | Ⅲ-2 | 1829 | 0.03 | 0.06 | 0.12 | 0.45 | 0.18 | 0.31 | 2.52 | 84.09 | 2.18 | 0.55 | Ⅲ-3 | 953 | 0.06 | 0.09 | 0.16 | 0.31 | 0.24 | 0.36 | 0.92 | 4.46 | 0.29 | 0.73 | Ⅲ-4 | 7312 | 0.04 | 0.09 | 0.21 | 0.45 | 0.33 | 0.48 | 1.47 | 117.66 | 1.54 | 1.00 |
|
Antimony geochemical parameters of stream sediments collected from different tectonic belts across the Erguna massif
|
|
Antimony boxplots of stream sediments collected from different tectonic belts across the Erguna massif
|
|
Antimony geochemical map of stream sediments collected from the Erguna massif 1—west of Laogou gold ore spot;2—Laogou small gold deposit;3—Shabaosi large gold deposit; 4—Longgouhe gold ore (mineralization) spots; 5—Shuangmuzui antimony ore (mineralization) spots; 6—Daleizishan gold-antimony ore spot; 7—Maojiadagou gold-antimony ore spot; 8—Ergenhe gold ore spot; 9—Yesuoku gold ore spot; 10—Likanhe lead-copper ore spot; 11—Madaerhe small gold deposit; 12—Ershiyizhan small gold-copper deposit; 13—Fulahan small gold deposit; 14—Huzhong lead-zinc ore spot; 15—southeast of Bowuleshan copper-lead ore spot; 16—Bishui lead-zinc deposit; 17—Heilonggou-Walahei small gold deposit; 18—Tayuanerzhixian copper-molybdenum deposit
|
Fig.4) ">
|
Comprehensive anomaly map of stream sediments collected from the Erguna massif(deposits and ore (mineralization) spots are the same with Fig.4)
|
编号 | 面积/ km2 | 样点数 | 极大值/ 10-6 | 极小值/ 10-6 | 平均值/ 10-6 | 中位值/ 10-6 | 总体背 景/10-6 | 异常下 限/10-6 | 离差 | 异常强度 | 异常衬度 | 分异系数 | Sb1 | 1255 | 319 | 84.09 | 0.71 | 1.97 | 1.20 | 0.33 | 0.71 | 4.94 | 5.97 | 2.77 | 2.51 | Sb2 | 74 | 19 | 1.93 | 0.72 | 1.03 | 0.90 | 0.33 | 0.71 | 0.34 | 3.12 | 1.45 | 0.33 | Sb3 | 1072 | 230 | 17.17 | 0.71 | 2.07 | 1.38 | 0.33 | 0.71 | 1.94 | 6.27 | 2.92 | 0.94 | Sb4 | 771 | 155 | 24.57 | 0.74 | 4.34 | 2.34 | 0.33 | 0.71 | 4.97 | 13.15 | 6.11 | 1.15 | Sb5 | 9 | 3 | 5.53 | 3.44 | 4.41 | 4.25 | 0.33 | 0.71 | 1.05 | 13.36 | 6.21 | 0.24 | Sb6 | 101 | 23 | 8.61 | 0.81 | 2.29 | 1.50 | 0.33 | 0.71 | 2.16 | 6.94 | 3.23 | 0.94 | Sb7 | 14 | 3 | 6.45 | 1.09 | 3.74 | 3.67 | 0.33 | 0.71 | 2.68 | 11.33 | 5.27 | 0.72 | Sb8 | 9 | 3 | 3.00 | 0.89 | 1.92 | 1.86 | 0.33 | 0.71 | 1.06 | 5.82 | 2.70 | 0.55 | Sb9 | 37 | 10 | 2.57 | 0.72 | 1.24 | 1.03 | 0.33 | 0.71 | 0.63 | 3.76 | 1.75 | 0.51 | Sb10 | 14 | 4 | 2.93 | 0.78 | 1.33 | 0.81 | 0.33 | 0.71 | 1.07 | 4.03 | 1.87 | 0.80 | Sb11 | 17 | 3 | 4.04 | 2.56 | 3.34 | 3.41 | 0.33 | 0.71 | 0.74 | 10.12 | 4.70 | 0.22 | Sb12 | 20 | 3 | 1.45 | 0.86 | 1.24 | 1.42 | 0.33 | 0.71 | 0.33 | 3.76 | 1.75 | 0.27 | Sb13 | 28 | 5 | 1.63 | 0.94 | 1.16 | 1.00 | 0.33 | 0.71 | 0.30 | 3.52 | 1.63 | 0.26 | Sb14 | 39 | 8 | 1.41 | 0.73 | 1.09 | 1.07 | 0.33 | 0.71 | 0.28 | 3.30 | 1.54 | 0.26 | Sb15 | 27 | 6 | 5.66 | 0.72 | 1.86 | 1.24 | 0.33 | 0.71 | 1.89 | 5.64 | 2.62 | 1.02 | Sb16 | 23 | 7 | 1.83 | 0.72 | 1.15 | 0.99 | 0.33 | 0.71 | 0.39 | 3.48 | 1.62 | 0.34 | Sb17 | 9 | 3 | 1.09 | 0.94 | 1.01 | 0.99 | 0.33 | 0.71 | 0.08 | 3.06 | 1.42 | 0.08 | Sb18 | 27 | 5 | 4.78 | 1.26 | 2.71 | 1.51 | 0.33 | 0.71 | 1.82 | 8.21 | 3.82 | 0.67 | Sb19 | 30 | 5 | 8.21 | 1.98 | 4.75 | 4.51 | 0.33 | 0.71 | 2.23 | 14.39 | 6.69 | 0.47 | Sb20 | 47 | 10 | 2.46 | 0.80 | 1.46 | 1.25 | 0.33 | 0.71 | 0.61 | 4.42 | 2.06 | 0.42 | Sb21 | 14 | 3 | 1.91 | 0.77 | 1.31 | 1.25 | 0.33 | 0.71 | 0.57 | 3.97 | 1.85 | 0.44 | Sb22 | 94 | 23 | 5.78 | 0.71 | 1.72 | 1.20 | 0.33 | 0.71 | 1.23 | 5.21 | 2.42 | 0.72 | Sb23 | 88 | 14 | 8.80 | 0.71 | 3.34 | 2.75 | 0.33 | 0.71 | 2.11 | 10.12 | 4.70 | 0.63 | Sb24 | 47 | 7 | 6.87 | 2.16 | 3.66 | 3.18 | 0.33 | 0.71 | 1.52 | 11.09 | 5.15 | 0.42 | Sb25 | 50 | 12 | 1.68 | 0.75 | 1.05 | 0.98 | 0.33 | 0.71 | 0.29 | 3.18 | 1.48 | 0.28 | Sb26 | 109 | 25 | 23.39 | 0.71 | 3.27 | 1.24 | 0.33 | 0.71 | 4.69 | 9.91 | 4.61 | 1.43 | Sb27 | 464 | 112 | 2.92 | 0.71 | 1.04 | 0.89 | 0.33 | 0.71 | 0.39 | 3.15 | 1.46 | 0.38 | Sb28 | 18 | 3 | 1.78 | 1.47 | 1.59 | 1.53 | 0.33 | 0.71 | 0.16 | 4.82 | 2.24 | 0.10 | Sb29 | 31 | 7 | 1.10 | 0.84 | 0.97 | 0.93 | 0.33 | 0.71 | 0.10 | 2.94 | 1.37 | 0.10 | Sb30 | 63 | 13 | 2.11 | 0.75 | 1.34 | 1.14 | 0.33 | 0.71 | 0.42 | 4.06 | 1.89 | 0.31 | Sb31 | 76 | 17 | 4.13 | 0.79 | 1.53 | 1.44 | 0.33 | 0.71 | 0.80 | 4.64 | 2.15 | 0.52 | Sb32 | 14 | 7 | 1.91 | 0.71 | 0.97 | 0.84 | 0.33 | 0.71 | 0.43 | 2.94 | 1.37 | 0.44 | Sb33 | 111 | 23 | 4.24 | 0.73 | 1.80 | 1.57 | 0.33 | 0.71 | 1.00 | 5.45 | 2.54 | 0.56 | Sb34 | 224 | 55 | 5.02 | 0.71 | 1.41 | 1.11 | 0.33 | 0.71 | 0.81 | 4.27 | 1.99 | 0.57 | Sb35 | 13 | 4 | 1.66 | 0.87 | 1.26 | 1.25 | 0.33 | 0.71 | 0.37 | 3.82 | 1.77 | 0.29 | Sb36 | 16 | 6 | 1.33 | 0.82 | 0.96 | 0.86 | 0.33 | 0.71 | 0.20 | 2.91 | 1.35 | 0.21 | Sb37 | 177 | 40 | 11.90 | 0.74 | 2.69 | 1.23 | 0.33 | 0.71 | 2.88 | 8.15 | 3.79 | 1.07 | Sb38 | 26 | 5 | 2.22 | 0.72 | 1.67 | 1.72 | 0.33 | 0.71 | 0.62 | 5.06 | 2.35 | 0.37 | Sb39 | 16 | 3 | 2.46 | 0.87 | 1.54 | 1.29 | 0.33 | 0.71 | 0.82 | 4.67 | 2.17 | 0.53 | Sb40 | 12 | 4 | 1.05 | 0.81 | 0.89 | 0.85 | 0.33 | 0.71 | 0.11 | 2.70 | 1.25 | 0.12 | Sb41 | 18 | 3 | 117.66 | 6.01 | 62.75 | 64.58 | 0.33 | 0.71 | 55.85 | 190.15 | 88.38 | 0.89 | Sb42 | 14 | 3 | 2.09 | 0.83 | 1.37 | 1.20 | 0.33 | 0.71 | 0.65 | 4.15 | 1.93 | 0.47 | Sb43 | 21 | 3 | 2.21 | 1.19 | 1.85 | 2.14 | 0.33 | 0.71 | 0.57 | 5.61 | 2.61 | 0.31 | Sb44 | 26 | 8 | 2.05 | 0.72 | 0.98 | 0.81 | 0.33 | 0.71 | 0.45 | 2.97 | 1.38 | 0.46 | Sb45 | 56 | 12 | 4.17 | 0.71 | 1.33 | 1.18 | 0.33 | 0.71 | 0.94 | 4.03 | 1.87 | 0.71 | Sb46 | 114 | 29 | 7.90 | 0.75 | 1.78 | 1.15 | 0.33 | 0.71 | 1.54 | 5.39 | 2.51 | 0.87 | Sb47 | 24 | 4 | 3.25 | 1.07 | 1.98 | 1.79 | 0.33 | 0.71 | 0.95 | 6.00 | 2.79 | 0.48 | Sb48 | 26 | 5 | 13.80 | 0.80 | 4.38 | 1.41 | 0.33 | 0.71 | 5.54 | 13.27 | 6.17 | 1.26 | Sb49 | 39 | 11 | 1.40 | 0.80 | 0.94 | 0.89 | 0.33 | 0.71 | 0.17 | 2.85 | 1.32 | 0.18 | Sb50 | 16 | 4 | 1.30 | 0.98 | 1.15 | 1.16 | 0.33 | 0.71 | 0.13 | 3.48 | 1.62 | 0.11 | Sb51 | 631 | 141 | 13.93 | 0.71 | 1.82 | 1.15 | 0.33 | 0.71 | 1.73 | 5.52 | 2.56 | 0.95 | Sb52 | 37 | 6 | 2.21 | 0.90 | 1.55 | 1.70 | 0.33 | 0.71 | 0.51 | 4.70 | 2.18 | 0.33 | Sb53 | 357 | 85 | 2.99 | 0.71 | 1.09 | 0.96 | 0.33 | 0.71 | 0.37 | 3.30 | 1.54 | 0.34 | Sb54 | 48 | 11 | 2.07 | 0.72 | 1.23 | 1.07 | 0.33 | 0.71 | 0.46 | 3.73 | 1.73 | 0.37 | Sb55 | 57 | 12 | 6.54 | 0.73 | 2.09 | 1.29 | 0.33 | 0.71 | 1.83 | 6.33 | 2.94 | 0.88 | Sb56 | 47 | 16 | 0.98 | 0.71 | 0.81 | 0.86 | 0.33 | 0.71 | 0.20 | 2.45 | 1.14 | 0.25 | Sb57 | 24 | 7 | 1.23 | 0.76 | 0.94 | 0.93 | 0.33 | 0.71 | 0.18 | 2.85 | 1.32 | 0.19 | Sb58 | 26 | 6 | 1.23 | 0.71 | 0.96 | 0.93 | 0.33 | 0.71 | 0.22 | 2.91 | 1.35 | 0.23 | Sb59 | 14 | 4 | 1.73 | 0.74 | 1.04 | 0.84 | 0.33 | 0.71 | 0.47 | 3.15 | 1.46 | 0.45 | Sb60 | 11 | 3 | 7.48 | 1.11 | 4.44 | 4.72 | 0.33 | 0.71 | 3.19 | 13.45 | 6.25 | 0.72 | Sb61 | 23 | 6 | 1.80 | 0.72 | 1.03 | 0.92 | 0.33 | 0.71 | 0.41 | 3.12 | 1.45 | 0.40 | Sb62 | 17 | 3 | 4.46 | 0.88 | 2.12 | 1.01 | 0.33 | 0.71 | 2.03 | 6.42 | 2.99 | 0.96 | Sb63 | 24 | 7 | 2.71 | 0.72 | 1.09 | 0.79 | 0.33 | 0.71 | 0.72 | 3.30 | 1.54 | 0.66 | Sb64 | 31 | 8 | 1.61 | 0.73 | 1.06 | 0.92 | 0.33 | 0.71 | 0.33 | 3.21 | 1.49 | 0.31 | Sb65 | 31 | 6 | 4.33 | 1.14 | 1.98 | 1.58 | 0.33 | 0.71 | 1.20 | 6.00 | 2.79 | 0.61 | Sb66 | 19 | 5 | 2.39 | 0.85 | 1.19 | 0.91 | 0.33 | 0.71 | 0.67 | 3.61 | 1.68 | 0.56 |
|
The statistics parameters of antimony geochemical anomalies in Erguna massif
|
[1] |
李增达, 张福良, 胡永达, 等. 锑矿开发利用现状及发展趋势[J]. 中国矿业, 2014, 23(4):11-15.
|
[1] |
Li Z D, Zhang F L, Hu Y D, et al. Research on development status and trends of antimony mining[J]. China Mining Magazine, 2014, 23(4):11-15.
|
[2] |
罗英杰, 王小烈, 柳群义, 等. 中国锑资源产业发展形势及对策建议[J]. 资源与产业, 2016, 18(1):75-81.
|
[2] |
Luo Y J, Wang X L, Liu Q Y, et al. Development actuality and suggestions of china’s antimony industry[J]. Resources and Industries, 2016, 18(1):75-81.
|
[3] |
董延涛, 袁博, 牛颖超. 我国锑矿资源产业高质量发展研究[J]. 现代矿业, 2020, 36(10):19-21.
|
[3] |
Dong Y T, Yuan B, Niu Y C. Study on high quality development of antimony resource industry in China[J]. Modern Mining, 2020, 36(10):19-21.
|
[4] |
王永磊, 徐珏, 张长青, 等. 中国锑矿成矿规律概要[J]. 地质学报, 2014, 88(12):2208-2215.
|
[4] |
Wang Y L, Xu J, Zhang C Q, et al. Summary of metallogenic regularities of antimony deposits in China[J]. Acta Geologica Sinica, 2014, 88(12):2208-2215.
|
[5] |
张天羽, 李聪颖, 孙赛军, 等. 锑的地球化学性质与华南锑矿带成因初探[J]. 岩石学报, 2020, 36(1):44-54.
|
[5] |
Zhang T Y, Li C Y, Sun S J, et al. Geochemical characteristics of antimony and genesis of antimony deposits in South China[J]. Acta Petrologica Sinica, 2020, 36(1):44-54.
|
[6] |
王永磊, 陈毓川, 王登红, 等. 中国锑矿主要矿集区及其资源潜力探讨[J]. 中国地质, 2013, 40(5):1366-1379.
|
[6] |
Wang Y L, Chen Y C, Wang D H, et al. The principal antimony concentration areas in China and their resource potentials[J], Geology in China, 2013, 40(5):1366-1379.
|
[7] |
彭澎, 陈广浩. 湖南锑金矿成矿大爆发:现象与机制[J]. 大地构造与成矿学, 2000, 24(4):357-364.
|
[7] |
Peng B, Chen G H. Phenomena and formational mechanism for metallogenetic explosion of Sb-Au ore deposits in Hunan Province,China[J]. Geotectonica et Metallogenia, 2000, 24(4):357-364.
|
[8] |
刘建明, 业杰, 何斌斌, 等. 华南巨型锑矿带中的Sedex型锑矿床[J]. 矿床地质, 2002, 21(S1):169-172.
|
[8] |
Liu J M, Ye J, He B B, et al. Sedex-type antimony deposits in giant antimony metallogenic belt,South China[J]. Mineral Deposits, 2002, 21(S1):169-172.
|
[9] |
王登红, 秦燕, 王成辉, 等. 贵州低温热液型汞、锑、金矿床成矿谱系——晴隆大厂、兴仁紫木凼和铜仁乱岩塘为例[J]. 大地构造与成矿学, 2012, 36(3):330-336.
|
[9] |
Wang D H, Qin Y, Wang C H, et al. Mineralization pedigree for epithermal Hg,Sb,Au deposits in Guizhou Province:Taking the Dachang Sb deposit,the Zimudang Au deposit and the Luanyantang Hg deposit for examples[J]. Geotectonica et Metallogenia, 2012, 36(3):330-336.
|
[10] |
丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013, 40(3):846-858.
|
[10] |
Ding J H, Yang Y H, Deng F. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 2013, 40(3):846-858.
|
[11] |
王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.
|
[11] |
Wang D H. Study on critical mineral resources:Significance of research,determination of types,attributes of research,progress of prospecting,problems of utilization,and direction of exploitation[J]. Earth Acta Geologica Sinica, 2019, 93(6):1189-1209.
|
[12] |
张所续, 刘伯恩, 马朋林. 美国关键矿产战略调整对我国的相关启示[J]. 中国国土资源经济, 2019, 32(7):38-45.
|
[12] |
Zhang S X, Liu B E, Ma P L. The Relevant enlightenment of the strategic adjustment of critical minerals in the United States[J]. Natural Resource Economics of China, 2019, 32(7):38-45.
|
[13] |
郑有业, 王达, 易建洲, 等. 西藏北喜马拉雅成矿带锑金属成矿作用及找矿方向[J]. 地学前缘, 2022, 29(1):200-230.
|
[13] |
Zheng Y Y, Wang D, Yi J Z, et al. Antimony mineralization and prospecting orientation in the North Himalayan Metallogenic Belt,Tibet[J]. Earth Science Frontiers, 2022, 29(1):200-230.
|
[14] |
尹国良, 崔玉军, 于跃江, 等. 黑龙江省额尔古纳地块构造地球化学特征及地质意义[J]. 矿产与地质, 2018, 32(1):143-150.
|
[14] |
Yin G L, Cui Y J, Yu Y J, et al. Tectono geochemistry characteristics and geological significance of Eergu’na block,Heilongjiang Province[J]. Mineral Resources and Geology[J], 2018, 32(1):143-150.
|
[15] |
常立海, 王晓勇, 王献忠, 等. 大兴安岭北部漠河逆冲推覆构造的特征及演化[J]. 吉林大学学报:地球科学版, 2007, 37(S1):11-15.
|
[15] |
Chang L H, Wang X Y, Wang X Z, et al. Characteristics and evolution of thrust nappe structure in the Mohe area,Daxing’anling[J]. Journal of Jilin University:Earth Science Edition, 2007, 37(S1):11-15.
|
[16] |
赵书跃, 郑全波, 韩彦东. 漠河逆冲推覆构造中段地质特征及构造演化[J]. 地质通报, 2016, 35(7):1095-1105.
|
[16] |
Zhao S Y, Zheng Q B, Han Y D. Geological characteristics and tectonic evolution of the middle segment of Mohe thrust nappe[J]. Geological Bulletin of China, 2016, 35(7):1095-1105.
|
[17] |
赵轩, 赵广江. 黑龙江省漠河县砂宝斯金矿矿床成因及找矿标志[J]. 世界有色金属, 2017(17):90-92.
|
[17] |
Zhao X, Zhao G J. Genesis of deposit and prospecting criteria of gold deposit in Mohe country of the Shabaosi in Heilongjiang Province[J]. World Nonferrous Metals, 2017(17):90-92.
|
[18] |
郭凯磊, 宋艳红. 呼玛县富拉罕岩金矿地质特征及成矿条件分析[J]. 世界有色金属, 2018(9):92-93.
|
[18] |
Guo K L, Song Y H. Geological characteristics and metallogenic condition analysis of Fulahan gold deposit in Huma Country[J]. World Nonferrous Metals, 2018(9):92-93.
|
[19] |
姜宇. 黑龙江省漠河县毛家大沟区找矿前景分析[J]. 黑龙江冶金, 2014, 34(1):56-62.
|
[19] |
Jiang Y. Analysis for exploration prospect in Maojiadagou area of Mohe Country of Heilongjiang[J]. Heilongjiang Metallurgy, 2014, 34(1):56-62.
|
[20] |
王献忠, 王晓勇, 石书校. 黑龙江省老沟—二根河成矿带金矿床地质特征及找矿方向[J]. 矿床地质, 2010, 29(S1):123-132.
|
[20] |
Wang X Z, Wang X Y, Shi S X. Geological characteristics and prospecting direction of gold deposits in Laogou-Ergenhe metallogenic belt,Heilongjiang Province[J]. Mineral Deposits, 2010, 29(S1):123-132.
|
[21] |
孙家宁, 申大元. 大兴安岭北段砂宝斯—老沟地区金成矿规律及找矿方向[J]. 地质与资源, 2013, 22(3):174-178.
|
[21] |
Sun J N, Shen D Y. Metallogenic regularity and ore-searching direction of the Shabaosi-Laogou region in the northern section of Daxinganling[J]. Geology and Resources, 2013, 22(3):174-178.
|
[22] |
刘驰, 张华, 汤正江, 等. 我国森林沼泽景观区地球化学系列参数统计[J]. 物探与化探, 2013, 37(4):585-590.
|
[22] |
Liu C, Zhang H, Tang Z J, et al. Statistics of series of geochemical parameters for the forest swamp landscape in China[J]. Geophysical and Geochemical Exploration, 2013, 37(4):585-590.
|
[23] |
迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007:94-95.
|
[23] |
Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007:94-95.
|
[24] |
刘汉粮, 聂兰仕, Shojin Davaa, 等. 中蒙边界地区汇水域沉积物69种元素的背景值[J]. 物探与化探, 2019, 43(6):1163-1172.
|
[24] |
Liu H L, Nie L S, Shojin D, et al. Characteristics of background values of 69 elements in the catchment sediments of the Altay area across the boundary between China and Mongolia[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1163-1172.
|
[25] |
高艳芳, 陈军威, 张玉领, 等. 对地球化学图编制过程的深层探究[J]. 物探化探计算技术, 2015, 37(4):538-546.
|
[25] |
Gao Y F, Chen J W, Zhang Y L, et al. Further research on geochemical mapping[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(4):538-546.
|
[26] |
周艳晶, 李建武, 王高尚, 等. 全球锑矿资源分布及开发现状[J]. 中国矿业, 2014, 23(10):13-16.
|
[26] |
Zhou Y J, Li J W, Wang G S, et al. Distribution and development situation of global antim ony resources[J]. China Mining Magazine, 2014, 23(10):13-16.
|
[27] |
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984:332-336.
|
[27] |
Liu Y J, Cao L M, Li Z L, et al. Geochemistry of elements[M]. Beijing: Science Press, 1984:332-336.
|
[28] |
谢学锦, 刘大文, 向运川, 等. 地球化学块体——概念和方法学的发展[J]. 中国地质, 2002, 29(3):225-233.
|
[28] |
Xie X J, Liu D W, Xiang Y C, et al. Geochemical blocks-development of concept and methodology[J]. Geology in China, 2002, 29(3):225-233.
|
[29] |
刘汉粮, 王学求, 聂兰仕, 等. 阿尔泰成矿带中蒙边界地区稀有元素铌和钽区域地球化学特征[J]. 现代地质, 2018, 32(5):1063-1073.
|
[29] |
Liu H L, Wang X Q, Nie L S, et al. Regional geochemistry of niobium and tantalum across the boundary of China and Mongolia in the Altay metallogenic belt[J]. Geoscience, 2018, 32(5):1063-1073.
|
[30] |
刘汉粮, 聂兰仕, Shojin Davaa, 等. 中蒙边界地区战略性矿产资源锂区域地球化学分布及控制因素[J]. 地球科学, 2022, 47(8):2795-2808.
|
[30] |
Liu H L, Nie L S, Shojin D, et al. Regional geochemical distribution and controlling factors of lithium in the Sino-Mongolia Border Areas[J]. Earth Science, 2022, 47(8):2795-2808.
|
[31] |
鄢鑫生. 黑龙江省二十五站金锑及多金属矿成矿地质条件及找矿方向[D]. 长春: 吉林大学, 2017.
|
[31] |
Yan X S. Ore-forming geological conditions and prospecting direction of Au, Sb and polymetallic deposits in the Ershiwuzhan area,Heilongjiang Province[D]. Changchun: Jilin University, 2017.
|
[1] |
XIANG Wen-Shuai, BAI Yang, JIANG Jun-Sheng, LEI Yi-Jun, HUNDIE Melka, SISAY Degu, ZHANG Yuan-Pei, WU Ying, ZHENG Xiong-Wei. Application of the geochemical block method to the assessment of copper resources in Ethiopia[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 845-855. |
[2] |
YANG Xing, GUAN Yu-Chun, ZOU Tao, LI Wei. Application of comprehensive soil and heavy sand survey in tin polymetallic prospecting in Kundelai Zhalage area, Zhalute Banner, Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 868-880. |
|
|
|
|