|
|
Log-based identification of gas-bearing shales in the Longmaxi Formation of the Laifeng area: A case study of well WY1 |
PEI Sheng-Liang1,2( ), QU Jian-Xin3, ZHANG Peng4( ) |
1. College of Earth Sciences, Guilin University of Technology, Guilin 541006, China 2. China Institute of Geo-Envronmental Monitoring, Beijing 100081, China 3. Inner Mongolia Coal Geological Exploration (Group) 109 Co., Ltd., Hulunbuir 021008, China 4. School of Mining and Civil Engineering, Liupanshui Normal University, Liupanshui 553004, China |
|
|
Abstract Except for the Sichuan Basin, the marine shales in the Longmaxi Formation in Hubei show great potential for shale gas exploration. Logging technology is highly mature in the exploration and development of hydrocarbons. This study systematically analyzed the log response characteristics of gas-bearing shales in the Longmaxi Formation based on logs obtained from well WY1 in the Laifeng area. As indicated by the analysis results, the gas-bearing shales of the Longmaxi Formation in well WY1 are characterized by high natural-gamma-ray values, high contents of uranium, thorium, and compensated neutrons, high interval transit time, and low density. Their deep and shallow lateral resistivity is lower than that of the underlying Baota Formation carbonate rocks but is higher than that of the sandy shales. Moreover, the positive differences indicate that high-angle fractures occur in the shales. The superimposition of log curves and the analysis of cross plots for gas-bearing shales reveal that ① the superimposed log curves of both natural gamma ray-lithologic density and interval transit time-lithologic density show significant positive differences, while those of both natural gamma ray-compensated neutrons and interval transit time-compensated neutrons show significant negative differences; ② the superimposed log curves of interval transit time-lithologic density indicate the gas-bearing intervals the most accurately; ③ the organic-rich gas-bearing shales can be identified the most effectively using the log cross plots of interval transit time-compensated neutrons, compensated neutrons-natural gamma ray, and deep lateral resistivity-compensated neutrons.
|
Received: 15 February 2023
Published: 16 April 2024
|
|
Corresponding Authors:
ZHANG Peng
E-mail: peisl@glut.edu.cn;283176398@qq.com
|
|
|
|
|
Geological background of studying area
|
|
Comprehensive well logging in well WY1
|
|
High angle crack photo of shale in Longmaxi Formation of well WY1 a—core photo at the depth of 913.31~913.97 m,high angle shear crack filled with calcite; b—core photo at the depth of 934.49~934.92 m, parallel high angle shear cracks
|
|
Comprehensive logging interpretation for well WY1
|
岩性 | 含气量 | 自然伽马/API | 深侧向电阻率 /(Ω·m) | 浅侧向电阻率 /(Ω·m) | 岩性密度/ (g·cm-3) | 补偿中子/% | 声波时差/(μs·m-1) | 黑色泥页岩 | 高 | 180.0~495.0 | 48.5~876.5 | 16.0~717.5 | 2.63~2.71 | 4.0~18.5 | 195.0~269.0 | 灰色泥页岩 | 高 | 204.0~305.0 | 27.0~313.5 | 20.0~232.5 | 2.67~2.71 | 5.0~17.5 | 206.0~263.0 | 粉砂质泥岩 | 高 | 230.0~300.0 | 87.5~63.5 | 75.0~495.0 | 2.65~2.70 | 9.0~11.5 | 203.0~234.5 | 中 | 200.0~250.0 | 120.0~1000.0 | 80.0~770.0 | 2.64~2.72 | 6.0~10.0 | 192.0~211.0 | 泥质粉砂岩 | 低 | 150.0~230.0 | 120.0~1300.0 | 100.0~1100.0 | 2.66~2.71 | 3.5~9.5 | 192.0~206.5 |
|
Shale logging response characteristics of the Longmaxi Formation in well WY1
|
|
Logging identification cross plot of shale in Longmaxi Formation in well WY1
|
[1] |
聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6):959-967.
|
[1] |
Nie H K, Zhang J C, Li Y X. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6):959-967.
|
[2] |
张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18,131-132.
|
[2] |
Zhang J C, Jin Z J, Yuan M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7):15-18,131-132.
|
[3] |
董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(S1):107-114.
|
[3] |
Dong D Z, Zou C N, Yang H, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1):107-114.
|
[4] |
游声刚, 郭茜, 耿小烬, 等. 关于我国页岩气产业的思考[J]. 金属矿山, 2014(12):3-7.
|
[4] |
You S G, Guo Q, Geng X J, et al. Thinking about China’s shale gas industry[J]. Metal Mine, 2014(12):3-7.
|
[5] |
余致理, 肖晖, 宋伟, 等. H202井区H3平台深层页岩气压裂效果分析[J]. 重庆科技学院学报:自然科学版, 2022, 24(3):29-34,73.
|
[5] |
Yu Z L, Xiao H, Song W, et al. Analysis of fracturing effect of deep shale gas on H3 platform in H202 area[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(3):29-34,73.
|
[6] |
梁成钢, 欧成华, 张金风, 等. 湖相页岩油建产区小层构造可视化精细建模——以吉木萨尔芦草沟组为例[J]. 重庆科技学院学报:自然科学版, 2022, 24(2):16-22.
|
[6] |
Liang C G, Ou C H, Zhang J F, et al. Visual fine modeling of small layer structure in lacustrine shale oil construction and production area:A case of the Lucaogou shale oil formation in jimusar sag[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(2):16-22.
|
[7] |
岳鹏升, 石乔, 岳来群, 等. 中国页岩气近期勘探开发进展[J]. 天然气勘探与开发, 2017, 40(3):38-44.
|
[7] |
Yue P S, Shi Q, Yue L Q, et al. The latest progress of shale gas exploration and development in China[J]. Natural Gas Exploration and Development, 2017, 40(3):38-44.
|
[8] |
李博, 魏国庆, 洪克岩, 等. 中国南方盆外复杂构造区页岩气井评价与认识——以湖北来凤咸丰区块来页1井为例[J]. 天然气工业, 2016, 36(8):29-35.
|
[8] |
Li B, Wei G Q, Hong K Y, et al. Evaluation and understanding on the shale gas wells in complex tectonic provinces outside Sichuan Basin,South China:A case study from Well Laiye 1 in Laifeng-Xianfeng Block,Hubei[J]. Natural Gas Industry, 2016, 36(8):29-35.
|
[9] |
聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4):484-491.
|
[9] |
Nie H K, Tang X, Bian R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4):484-491.
|
[10] |
李斌, 胡博文, 罗群. 湖南保靖地区龙马溪组层序地层及沉积微相研究[J]. 地质与勘探, 2017, 53(6):1229-1239.
|
[10] |
Li B, Hu B W, Luo Q. A study on sequence stratigraphy and sedimentary microfacies of longmaxi formation of early Silurian in the Baojing area,Hunan Province[J]. Geology and Exploration, 2017, 53(6):1229-1239.
|
[11] |
李瑶, 谢锐杰, 黄安, 等. 川西坳陷优质烃源岩的识别及分布特征[J]. 重庆科技学院学报:自然科学版, 2022, 24(3):9-13.
|
[11] |
Li Y, Xie R J, Huang A, et al. Identification method and distribution characteristics of high quality source rocks in West Sichuan depression[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2022, 24(3):9-13.
|
[12] |
王秀平, 牟传龙, 肖朝晖, 等. 鄂西来凤—咸丰地区五峰组—龙马溪组岩石学特征及其成因[J]. 石油与天然气地质, 2019, 40(1):50-66.
|
[12] |
Wang X P, Mou C L, Xiao Z H, et al. Petrologic characteristics and genesis analysis of the Ordovician Wufeng Formation-Silurian Longmaxi Formation in Laifeng-Xianfeng area of western Hubei[J]. Oil & Gas Geology, 2019, 40(1):50-66.
|
[13] |
郑宇龙, 牟传龙, 肖朝晖, 等. 复杂构造区页岩气储层特征及含气性控制因素——以湖北来凤—咸丰区块来地1井龙马溪组为例[J]. 海相油气地质, 2020, 25(2):108-120.
|
[13] |
Zheng Y L, Mou C L, Xiao Z H, et al. Characteristics and gas-bearing controlling factors of shale gas reservoir in complex tectonic provinces:A case from the Lower Silurian Longmaxi Formation of Well Laidi 1 in Laifeng-Xianfeng block,Hubei Province[J]. Marine Origin Petroleum Geology, 2020, 25(2):108-120.
|
[14] |
刘子驿, 张金川, 刘飏, 等. 湘鄂西地区五峰—龙马溪组泥页岩黄铁矿粒径特征[J]. 科学技术与工程, 2016, 16(26):34-41.
|
[14] |
Liu Z Y, Zhang J C, Liu Y, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas’ Wufeng-longmaxi formation shale[J]. Science Technology and Engineering, 2016, 16(26):34-41.
|
[15] |
姜生玲, 毛曼, 洪克岩, 等. 湘鄂西地区下寒武统牛蹄塘组页岩气聚集条件及含气性影响因素[J]. 海相油气地质, 2018, 23(1):75-82.
|
[15] |
Jiang S L, Mao M, Hong K Y, et al. Conditions of shale gas accumulation and gas-bearing factors of lower Cambrian niutitang formation in western hu’nan and Hubei[J]. Marine Origin Petroleum Geology, 2018, 23(1):75-82.
|
[16] |
何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2):8-17.
|
[16] |
He Z L, Nie H K, Zhang Y Y. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2):8-17.
|
[17] |
车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1):121-132.
|
[17] |
Che S Q. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi Formation in Fuling Gas Field,Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):121-132.
|
[18] |
李俊堂, 王如江, 高彬, 等. 新景煤矿保安区煤体结构特征及测井模型构建[J]. 矿业安全与环保, 2022, 49(2):72-77.
|
[18] |
Li J T, Wang R J, Gao B, et al. Characteristics of coal structure and construction of well logging model in Baoan block of Xinjing Mine[J]. Mining Safety & Environmental Protection, 2022, 49(2):72-77.
|
[19] |
王权铭, 杨宇江, 路增祥, 等. 基于勒让德多项式逼近的钻孔岩性分布特征预测模型[J]. 金属矿山, 2022(3):65-70.
|
[19] |
Wang Q M, Yang Y J, Lu Z X, et al. Prediction model of borehole lithology distribution characteristics based on Legendre polynomial approximation[J]. Metal Mine, 2022(3):65-70.
|
[20] |
李贵杰, 张建民, 岳爱忠, 等. 砂泥岩地层中气体对补偿中子测井的影响[J]. 测井技术, 2005, 29(6):515-516,527,571.
|
[20] |
Li G J, Zhang J M, Yue A Z, et al. Effect of gas in the sand-mudstone layer on compensated neutron log[J]. Well Logging Technology, 2005, 29(6):515-516,527,571.
|
[21] |
张宏学. 煤系气储层渗透率解析模型研究进展[J]. 矿业安全与环保, 2021, 48(4):92-98.
|
[21] |
Zhang H X. Research progress on analytical models of permeability for coal measure gas reservoir[J]. Mining Safety & Environmental Protection, 2021, 48(4):92-98.
|
[22] |
张晋言. 页岩油测井评价方法及其应用[J]. 地球物理学进展, 2012, 27(3):1154-1162.
|
[22] |
Zhang J Y. Well logging evaluation method of shale oil reservoirs and its applications[J]. Progress in Geophysics, 2012, 27(3):1154-1162.
|
[23] |
刘浩, 侯吉峰, 姜永东, 等. 煤与页岩中瓦斯解吸特性对比实验研究[J]. 矿业安全与环保, 2018, 45(3):1-5.
|
[23] |
Liu H, Hou J F, Jiang Y D, et al. Experimental study on desorption characteristics of gas in coal and shale[J]. Mining Safety & Environmental Protection, 2018, 45(3):1-5.
|
[24] |
王濡岳, 丁文龙, 王哲, 等. 页岩气储层地球物理测井评价研究现状[J]. 地球物理学进展, 2015, 30(1):228-241.
|
[24] |
Wang R Y, Ding W L, Wang Z, et al. Progress of geophysical well logging in shale gas reservoir evaluation[J]. Progress in Geophysics, 2015, 30(1):228-241.
|
[25] |
张永泽, 刘俊新, 冒海军, 等. 单轴压缩下页岩力学特性的各向异性试验研究[J]. 金属矿山, 2015(12):33-37.
|
[25] |
Zhang Y Z, Liu J X, Mao H J, et al. Anisotropic experimental study on mechanical properties of shale under uniaxial compression[J]. Metal Mine, 2015(12):33-37.
|
[26] |
周永刚, 戴黎明, 田振环, 等. 鲁北平源南部QK4钻孔岩心特征及第四纪地层划分[J]. 物探与化探, 2023, 47(1):56-64.
|
[26] |
Zhou Y G, Dai L M, Tian Z H, et al. Core characterics and Quaternary Stratigraphic division of borehobe QK4 in southern Lubei Plain[J]. Geophysical and Geochemical Exploration, 2023, 47(1):55-64.
|
[1] |
HE Xi-Peng, LIU Ming, XUE Ye, LI Yan-Jing, HE Gui-Song, MENG Qing-Li, ZHANG Yong, LIU Hao-Juan, LAN Jia-Da, YANG Fan. Practices and future research directions of geophysical exploration for normal-pressure shale gas in complex structural areas,southeastern Chongqing[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 314-326. |
[2] |
XUE Ye, YANG Fan, ZHAO Su-Cheng, LAN Jia-Da. Seismic data acquisition of normally pressured shale gas reservoirs in residual synclines in the Pengshui area,Sichuan Basin,China[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1490-1499. |
|
|
|
|