|
|
A comprehensive crosshole tomography method for karst identification based on color fusion technology |
MOU Xiao-Dong( ) |
Petroleum Engineering Corporation, SINOPEC, Dongying 257029, China |
|
|
Abstract Single crosshole tomography features a multiplicity of solutions, rendering it challenging to accurately identify karst anomalies. Given this, this study introduced color fusion technology and tested its effectiveness in the inversion of three types of crosshole seismic CT data using numerical simulations: elastic wave travel time CT, elastic wave attenuation CT, and electromagnetic wave attenuation CT. A field experiment on karst identification using comprehensive crosshole CT data reveals that the color fusion technology can effectively enhance the accuracy of karst identification. The results of this study provide an effective method for comprehensive crosshole detection and interpretation for karst exploration in foundational projects such as oil and gas pipelines, bridges, and tunnels, holding great significance for improving the exploration accuracy of karst.
|
Received: 29 May 2024
Published: 08 January 2025
|
|
|
|
|
|
Schematic diagram of grid discretization in cross hole CT inversion
|
|
Numerical model with two karst caves
|
地层 | 纵波速度/ (m·s-1) | 横波速度/ (m·s-1) | 密度/ (g·cm-3) | 品质因子Qp | 品质因子Qs | 相对介电常数 | 相对磁导率 | 电导率/ (s· ) | 中心点坐标 | 灰岩 | 2500 | 1450 | 2.5 | 50 | 15 | 9 | 1 | 0.001 | | 溶洞Y1 | 1500 | 0.25 | 1 | 10 | 5 | 81 | 1 | 0.003 | (15,17.5) | 溶洞Y2 | 1000 | 525 | 1.5 | 20 | 10 | 30 | 1 | 0.0025 | (15,37) |
|
Physical property parameters of mumerical model
|
|
Snapshot of elastic wave propagation corresponding to an excitation depth of 25 m
|
|
Snapshot of elctromaganetic wave propagation corresponding to an excitation depth of 25 m
|
|
Observations of elastic waves and electromagnetic waves excited at the depth of 25 m
|
|
Inversion results by different methods and corressponding RGB fusion result
|
|
Distribution of boreholes and cross-hole CT sections
|
|
Core condition of karst cave exposed by drilling
|
孔号 | 顶板埋深/m | 底板埋深/m | 顶板标高/m | 底板标高/m | 溶洞高度/m | 溶洞填充物 | ZK01 | 13.5 | 15.8 | 128.26 | 125.96 | 2.3 | 无充填 | ZK02 | 26.7 | 28.5 | 115.63 | 113.83 | 1.8 | 溶蚀性串珠状溶洞发育,岩体残余骨架尚存,充填物为 强风化、中风化岩碎块 | ZK05 | 33.5 | 34.4 | 108.96 | 108.06 | 0.9 | 半充填,充填黏性土,溶洞顶、底部溶蚀现象发育 |
|
Basic Situation of karst caves development exposed by drilling
|
|
Results with different inversion methods for ZK05~ZK03、ZK03~ZK01 profile
|
[1] |
张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46 (6):1403-1410.
|
[1] |
Zhang J, Feng X L, Yue X P. Application of comprehensive geophysical prospecting method in detecting concealed karst collapses[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1403-1410.
|
[2] |
Kaufmann G, Romanov D, Nielbock R. Cave detection using multiple geophysical methods:Unicorn cave,Harz Mountains,Germany[J]. Geophysics, 2011, 76(3):71-77.
|
[3] |
刘瑞军. 电测深联合剖面法在高铁路基岩溶探测中的应用[J]. 铁道勘察, 2024, 50(3):89-95.
|
[3] |
Liu R J. Combined electrical sounding profile method in the high-speed railway detecting karst of subgrade[J]. Railway Investigation and Surveying, 2024, 50(3):89-95.
|
[4] |
孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.
|
[4] |
Meng F S, Zhang G, Chen M J, et al. 3-D inversion of high density resistivity method based on 2-D high-density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3):672-678.
|
[5] |
McCrackin C, Kiflu H, Kruse S, et al. 3D resistivity survey over mapped caves in eogenetic karst terrane,west-central Florida,USA[J]. Journal of Cave and Karst Studies, 2022, 84(1):1-13.
|
[6] |
李玉, 陈宗清, 柳倩男, 等. 高密度电阻率法在复杂岩溶地区的应用研究[J]. 工程勘察, 2024, 52(1):72-78.
|
[6] |
Li Y, Chen Z Q, Liu Q N, et al. Study on the application of high-density resistivity method in complex karst area detection[J]. Geotechnical Investigation & Surveying, 2024, 52(1):72-78.
|
[7] |
龙斌, 张军, 李宏伟. 基于微动和探地雷达的城市轨道交通岩溶探测研究[J]. 现代雷达, 2023, 45 (12):40-46.
|
[7] |
Long B, Zhang J, Li H W. A study on Karst detection in urban rail transit construction based on micro motion and GPR[J]. Modern Radar, 2023, 45(12):40-46.
|
[8] |
王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2):360-363.
|
[8] |
Wang Y, Xi Z Z, Jiang H, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):360-363.
|
[9] |
张学亮, 谢涛, 周炜, 等. 等值反磁通瞬变电磁和微动勘探在浅部岩溶探测中的应用[J]. 煤田地质与勘探, 2023, 51 (12):157-166.
|
[9] |
Zhang X L, Xie T, Zhou W, et al. The application of the opposing coils transient electromagnetic method and microtremor survey method in shallow karst detection[J]. Coal Geology & Exploration, 2023, 51(12):157-166.
|
[10] |
杨江华, 徐丹, 张惠敏. 声呐法在基桩孔底岩溶探测中的应用研究[J]. 云南大学学报:自然科学版, 2023, 45 (S1):192-195.
|
[10] |
Yang J H, Xu D, Zhang H M. Research on application of sonar method in karst detection at the bottom of foundation pile hole[J]. Journal of Yunnan University:Natural Sciences Edition, 2023, 45 (S1):192-195.
|
[11] |
邓勇, 唐宇豪. 地震映像时频分析技术在岩溶探测中的应用[J]. 路基工程, 2023,(3):143-146.
|
[11] |
Deng Y, Tang Y H. Application of seismic image time-frequency analysis technology in karst detection[J]. Subgrade Engineering, 2023,( 3):143-146.
|
[12] |
史可, 徐峰, 贾学明, 等. 地震散射波法在公路桥基岩溶探测中的应用[J]. 公路交通技术, 2023, 39 (2):126-130.
|
[12] |
Shi K, Xu F, Jia X M, et al. Application of seismic scattering wave in karst prospecting of highway bridge foundation[J]. Technology of Highway and Transport, 2023, 39(2):126-130.
|
[13] |
沈志平, 陈发达, 张虎, 等. HVSR探测方法在城市岩溶勘察中的应用[J]. 地球物理学进展, 2022, 37(4):1757-1763.
|
[13] |
Shen Z P, Chen F D, Zhang H, et al. Application of HVSR detection method in urban karst investigation[J]. Progress in Geophysics, 2022, 37(4):1757-1763.
|
[14] |
杨耀, 朱德兵. 基于CMPCC处理技术的多道面波法在岩溶探测上的应用[J]. 工程地球物理学报, 2020, 17(5):559-566.
|
[14] |
Yang Y, Zhu D B. Application of multi-channel surface wave method based on CMPCC processing technology in karst exploration[J]. Chinese Journal of Engineering Geophysics, 2020, 17(5):559-566.
|
[15] |
罗术, 金俊俊, 甄大勇, 等. 基于数值模拟分析的弹性波CT岩溶探测能力研究与应用[J]. 工程地球物理学报, 2023, 20 (3):330-336.
|
[15] |
Luo S, Jin J J, Zhen D Y, et al. Application of the elastic wave tomography in karst exploration[J]. Chinese Journal of Engineering Geophysics, 2023, 20(3):330-336.
|
[16] |
朱鑫磊, 杨磊, 冯光福, 等. 地磁波CT和微动技术在盾构穿越岩溶地层中的综合应用研究[J]. 工程地球物理学报, 2022, 19 (5):619-629.
|
[16] |
Zhu X L, Yang L, Feng G F, et al. Application of comprehensive detection technology for shield tunneling through karst strata[J]. Chinese Journal of Engineering Geophysics, 2022, 19(5):619-629.
|
[17] |
李阳阳. 基于测井约束反演的跨孔电阻率CT在城市岩溶探测中的应用[D]. 济南: 山东大学, 2020.
|
[17] |
Li Y Y. Application of well logging constrained inversion of cross borehole ERT in urban karst investigation[D]. Jinan: Shandong University, 2020.
|
[18] |
苏宝, 刘晓丽, 卫晓波, 等. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5):1354-1358,1366.
|
[18] |
Su B, Liu X L, Wei X B, et al. Karst cave prospecting using cross-hole ultra-high density resistivity method[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1354-1358,1366.
|
[19] |
梁森, 陈建华, 李宏涛, 等. 基于松鼠搜索算法的跨孔电阻率溶洞探测[J]. 物探与化探, 2022, 46(5):1296-1305.
|
[19] |
Liang S, Chen J H, Li H T, et al. Detection of karst caves using the cross-hole resistivity method based on the squirrel search algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1296-1305.
|
[20] |
刘振明. 井间地震技术在岩溶精细探测中的应用研究[J]. 铁道工程学报, 2023, 40(12):19-24.
|
[20] |
Liu Z M. Research and application of cross-hole seismic technology in detailed karst dection[J]. Journal of Railway Engineering Society, 2023, 40(12):19-24.
|
[21] |
赵武阳. 跨孔地震波层析成像在岩溶探测中的应用研究[D]. 桂林: 桂林理工大学, 2021.
|
[21] |
Zhao W Y. Application of cross-hole seismic tomography in karst exploration[D]. Guilin: Guilin University of Technology, 2021.
|
[22] |
李文杰. 物探方法在岩溶探测中的应用研究[D]. 成都: 成都理工大学, 2020.
|
[22] |
Li W J. The application of geophysical method in karst exploration[D]. Chendu: Chengdu University of Technology, 2020.
|
[23] |
师学明, 商祥, 柳思龙. 跨孔电磁波与地震波CT交叉梯度联合反演算法研究及应用[C]// 2022年中国地球科学联合学术年会.北京:中国地球物理学会, 2022.
|
[23] |
Shi X M, Shang X, Liu S L. Research and application of cross hole electromagnetic wave and seismic wave CT cross gradient joint inversion algorithm[C]// 2022 proceedings of China Earth Science Joint Academic Annual Conference,Beijing.
|
[24] |
陈湘华, 王启明. 基于电磁波和弹性波层析成像探测的联合分析方法[J]. 科学技术与工程, 2019, 19(16):304-312.
|
[24] |
Chen X H, Wang Q M. Joint analysis by electromagnetic wave and elastic wave computerized tomography detection[J]. Science Technology and Engineering, 2019, 19(16):304-312.
|
[25] |
李婷婷, 王钊, 马世忠, 等. 地震属性融合方法综述[J]. 地球物理学进展, 2015, 30 (1):378-385.
|
[25] |
Li T T, Wang Z, Ma S Z, et al. Summary of seismic attributes fusion method[J]. Progress in Geophysics, 2015, 30(1):378-385.
|
[26] |
王睿, 李琼, 孙华军, 等. 基于主成分分析的融合方法在断裂识别的应用研究[J]. 物探化探计算技术, 2021, 43(6):715-723.
|
[26] |
Wang R, Li Q, Sun H J, et al. Application research of fusion method based on principal component analysis in fracture identification[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(6):715-723.
|
[27] |
杨楚龙, 王怀秀, 刘最亮. 基于改进XGBoost的地震多属性地质构造识别方法[J]. 科学技术与工程, 2023, 23 (29):12442-12450.
|
[27] |
Yang C L, Wang H X, Liu Z L. Seismic multi-attribute geological structure identification method based on improved XGBoost[J]. Science Technology and Engineering, 2023, 23(29):12442-12450.
|
[28] |
周单, 钟晗. 基于SSAE的地震属性融合技术[J]. 地球物理学进展, 2024, 39(2):647-660.
|
[28] |
Zhou S, Zhong H. A seismic attribute fusion technology based on SSAE[J]. Progress in Geophysics, 2024, 39(2):647-660.
|
[29] |
刘伟新, 王华, 万琼华, 等. 基于分频RGB融合技术的辫状河三角洲储层构型精细解剖[J]. 地球科学与环境学报, 2022, 44(5):765-774.
|
[29] |
Liu W X, Wang H, Wan Q H, et al. Fine analysis of braided river delta reservoir architecture based on frequency division RGB fusion technology[J]. Journal of Earth Sciences and Environment, 2022, 44(5):765-774.
|
[30] |
Balch A H. Color sonagrams:A new dimension in seismic data interpretation[J]. Geophysics, 1971, 36(6),1074-1098.
|
[31] |
Guo H, Lewis S, Marfurt K J. Mapping multiple attributes to three- and four-component color models——A tutorial[J]. Geophysics, 2008, 73(3):W7-W19.
|
[32] |
丁峰, 年永吉, 王治国, 等. 地震多属性RGBA颜色融合技术的应用研究[J]. 石油物探, 2010, 49(3):248-252.
|
[32] |
Ding F, Nian Y J, Wang Z G, et al. Application of seismic multi-attributes RGBA color blending[J]. Geophysical Prospecting for Petroleum, 2010, 49(3):248-252.
|
[33] |
杨艳, 秦克伟, 张东, 等. 一种改进的近地表层析成像SIRT算法[J]. 武汉大学学报:理学版, 2009, 55(2):201-205.
|
[33] |
Yang Y, Qin K W, Zhang D, et al. Improvement of SIRT algorithm in near-surface seismic tomography[J]. Journal of Wuhan University:Natural Science Edition, 2009, 55(2):201-205.
|
[34] |
马德堂. 弹性波场数值模拟及井间地震初至波旅行时层析成像[D]. 西安: 长安大学, 2006.
|
[34] |
Ma D T. Numerical simulation of elastic wave field and cross-well tomography based on first arrival time[D]. Xi’an: Changan University, 2006.
|
[35] |
Knopoff L, Aki K, Archambeau C B, et al. Attenuation of dispersed waves[J]. Journal of Geophysical Research, 1964, 69(8):1655-1657.
|
[36] |
王辉, 常旭, 高峰. 井间地震波衰减成像的几种方法[J]. 地球物理学进展, 2001, 16(1):104-109.
|
[36] |
Wang H, Chang X, Gao F. Several methods of crosswell seismic attenuation tomography[J]. Progress in Geophysics, 2001, 16(1):104-109.
|
[37] |
武焕平. 井间电磁波CT成像图像重建算法[D]. 长春: 吉林大学, 2021.
|
[37] |
Wu H P. Image reconstruction algorithm of cross-well electromagnetic wave CT imaging[D]. Changchun: Jilin University, 2021.
|
[38] |
倪建福, 刘四新. 跨孔电波衰减成像初始振幅估算方法比较[J]. 物探与化探, 2019, 43(3):634-641.
|
[38] |
Ni J F, Liu S X. Comparison of initial amplitude estimation methods for cross-hole electromagnetic wave attenuation tomography[J]. Geophysical and Geochemical Exploration, 2019, 43(3):634-641.
|
[39] |
赵明哲, 杨军, 张陆军, 等. 基于CUDA的高阶旋转交错网格有限差分法的弹性波正演模拟[J]. 地球物理学进展, 2022, 37(4):1697-1703.
|
[39] |
Zhao M Z, Yang J, Zhang L J, et al. Forward modeling of elastic wave based on CUDA finite difference method with high order rotating staggered grid[J]. Progress in Geophysics, 2022, 37(4):1697-1703.
|
[40] |
杨森林, 高静怀. 利用地震信号包络峰值瞬时频率衰减层析成像[C]// 中国地球物理学会第二十四届年会. 北京: 中国地球物理学会, 2008.
|
[40] |
Yang S L, Gao J H. Tomography using instantaneous frequency attenuation of seismic signal envelope peak[C]// Proceedings of the 24th Annual Meeting of the Chinese Geophysical Society. Beijing: Chinese Geophysical Society, 2008.
|
[41] |
Ba X, Li L, Wang J, et al. Near-surface site investigation and imaging of karst cave using comprehensive geophysical and laser scanning:A case study in Shandong,China[J]. Environ Earth Sciences, 2020,79,298:1-14.
|
[1] |
ZHAO Xu-Chen, LI Xue-Jian, CAO Fang-Zhi, LEI Xiao-Dong, LI Chen, HAN Yu-Da. An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1088-1094. |
[2] |
LI Tan-Wei, LI Zhen-Xing, GE Yan-Ming, WU Yuan-Ming. The application of comprehensive geophysical prospecting method to the investigation of Xiangjiang bridge in Zhuzhou[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 785-792. |
|
|
|
|