|
|
An analysis of the temporal and spatial changes in soil monitoring indices based on GIS and statistics |
WANG Yuan-Yuan1( ), HUA Ming1, JIN Yang1, CUI Xiao-Dan1, XU Wei-Wei1, LI Wen-Bo1, LIU Wei-Jing1, WANG Zi-Yi1, WEN Yu-Bo2( ) |
1. Technology Innovation Center of Land (Cultivated Land) Ecological Monitoring and Restoration Project of the Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, China 2. School of Geographic Sciences, Nantong University, Nantong 226000, China |
|
|
Abstract Soil monitoring is of significance for guiding the determination of the ecological quality of soil, the active ecological restoration and prevention of soil pollution, and the sustainable monitoring and utilization of land resources. To investigate the temporal and spatial changes in the soil monitoring indices in Yixing City, Jiangsu Province, this study collected the geochemical data on 426 soil samples taken during the multi-purpose geochemical survey of Yixing City in 2004 and 4 458 soil samples taken during the 1∶50 000 land quality geochemical survey in 2015. Based on these data, this study analyzed the changes in important soil environmental parameters of the study area using the geographic information system (GIS) and statistics. Moreover, it determined the changes in the parameters or element concentrations using box-whisker plots and t-tests, conducted an error analysis using the nugget value (C0) based on the semivariance function, and evaluated and analyzed different spatial variables. The results are as follows. From 2004 to 2015, the organic matter (OM) and nutrient elements such as nitrogen, phosphorus, and boron showed an upward trend; the pH of soil showed a significant downward trend; the contents of selenium and heavy metals such as cadmium, copper, lead, and zinc showed an upward trend, and the arsenic content did not change significantly.
|
Received: 17 December 2021
Published: 24 February 2023
|
|
Corresponding Authors:
WEN Yu-Bo
E-mail: hengrucc@126.com;wenyubo@ntu.edu.cn
|
|
|
|
|
Map of the study area and the sampling locations
|
元素指标 | 多目标区域地球化学调查(2004年) | 1∶5万土壤地球化学调查(2015年) | 最小值 | 1/4分位 | 中值 | 3/4分位 | 最大值 | 最小值 | 1/4分位 | 中值 | 3/4分位 | 最大值 | As | 4.36 | 7.38 | 8.42 | 9.74 | 23.70 | 5.81 | 8.28 | 9.34 | 10.48 | 87.80 | Cd | 0.07 | 0.14 | 0.17 | 0.21 | 5.37 | 0.08 | 0.16 | 0.20 | 0.25 | 1.05 | Cr | 36.7 | 68.1 | 74.8 | 80.0 | 118.0 | 27.2 | 68.5 | 74.6 | 80.6 | 176.0 | Cu | 11.90 | 21.08 | 25.10 | 27.93 | 89.40 | 13.70 | 23.68 | 28.16 | 31.89 | 99.80 | Hg | 0.033 | 0.088 | 0.120 | 0.150 | 1.190 | 0.040 | 0.094 | 0.123 | 0.154 | 0.645 | Ni | 11.50 | 22.10 | 26.25 | 31.05 | 46.60 | 7.33 | 22.55 | 26.44 | 29.93 | 58.60 | Pb | 16.30 | 28.90 | 31.60 | 34.80 | 437.00 | 25.10 | 35.04 | 37.57 | 40.68 | 133.49 | Zn | 34.0 | 57.7 | 66.3 | 75.3 | 234.0 | 48.0 | 66.3 | 74.4 | 83.7 | 238.0 | pH | 4.47 | 5.85 | 6.51 | 6.93 | 8.10 | 4.06 | 5.51 | 6.03 | 6.42 | 8.04 | OM | 5.34 | 21.21 | 26.03 | 29.70 | 91.54 | 7.75 | 26.47 | 33.79 | 41.43 | 87.00 | N | 0.47 | 1.29 | 1.54 | 1.75 | 2.88 | 0.48 | 1.51 | 1.89 | 2.26 | 4.04 | P | 0.25 | 0.55 | 0.65 | 0.76 | 2.01 | 0.29 | 0.62 | 0.73 | 0.83 | 1.93 | K | 10.13 | 12.87 | 13.95 | 14.94 | 22.42 | 9.20 | 12.75 | 13.83 | 14.79 | 28.90 | B | 30.00 | 61.80 | 69.00 | 75.00 | 92.00 | 39.15 | 72.23 | 77.25 | 81.94 | 110.00 | Mo | 0.30 | 0.49 | 0.57 | 0.70 | 7.16 | 0.40 | 0.59 | 0.66 | 0.76 | 3.88 | Se | 0.14 | 0.30 | 0.34 | 0.48 | 6.18 | 0.15 | 0.33 | 0.38 | 0.51 | 5.14 |
|
Comparison of the soil monitoring data of 2004~2015
|
|
Boxplots of the typical heavy metal concentrations for two dates
|
|
Boxplots of soil physico-chemical parameters for two dates
|
指标 | 成对差值 | t | df | Sig. (双侧) | 0.005水平 下有无显 著性差异 | 均值 | 标准差 | 均值的 标准误差 | 差值的 95% 置信区间 | 下限 | 上限 | pH15-pH04 | -0.438 | 0.605 | 0.030 | -0.498 | -0.378 | -14.352 | 393 | 0 | 有 | OM15-OM04 | 8.392 | 9.131 | 0.454 | 7.500 | 9.284 | 18.496 | 404 | 0 | 有 | N15-N04 | 0.340 | 0.417 | 0.021 | 0.299 | 0.381 | 16.312 | 398 | 0 | 有 | P15-P04 | 0.066 | 0.154 | 0.008 | 0.051 | 0.081 | 8.565 | 396 | 0 | 有 | K15-K04 | -0.094 | 1.047 | 0.053 | -0.198 | 0.009 | -1.796 | 395 | 0.073 | 无 | B15-B04 | 8.602 | 10.171 | 0.511 | 7.597 | 9.607 | 16.830 | 395 | 0 | 有 | Mo15-Mo04 | 0.073 | 0.137 | 0.007 | 0.059 | 0.086 | 10.834 | 415 | 0 | 有 | Se15-Se04 | 0.034 | 0.106 | 0.005 | 0.023 | 0.044 | 6.436 | 408 | 0 | 有 |
|
Results of t-test for the soil physico-chemical parameters
|
元素 | 成对差值 | t | df | Sig. (双侧) | 0.005水平 下有无显 著差异 | 均值 | 标准差 | 均值的 标准误差 | 差值的95% 置信区间 | 下限 | 上限 | As15-As04 | 0.924 | 1.641 | 0.082 | 0.764 | 1.084 | 11.335 | 404 | 0 | 有 | Cd15-Cd04 | 0.025 | 0.065 | 0.003 | 0.019 | 0.032 | 7.763 | 407 | 0 | 有 | Cr15-Cr04 | -0.035 | 7.270 | 0.365 | -0.753 | 0.683 | -0.096 | 395 | 0.924 | 无 | Cu15-Cu04 | 3.281 | 4.195 | 0.209 | 2.870 | 3.691 | 15.718 | 403 | 0 | 有 | Hg15-Hg04 | -0.001 | 0.039 | 0.002 | -0.003 | 0.005 | 0.546 | 409 | 0.586 | 无 | Ni15-Ni04 | -0.019 | 3.923 | 0.197 | -0.406 | 0.370 | -0.099 | 398 | 0.921 | 无 | Pb15-Pb04 | 5.989 | 5.282 | 0.261 | 5.476 | 6.503 | 22.930 | 408 | 0 | 有 | Zn15-Zn04 | 8.044 | 12.123 | 0.606 | 6.852 | 9.236 | 13.271 | 399 | 0 | 有 |
|
Results of t-test for As and heavy metals in soil
|
指标 | 量纲 | 分布类型 | 变换 | 理论半变异函数 | C0 | E | pH | 无 | 正态 | 无 | 0.084349×Nugget+0.56600×Spherical(9480) | 0.11500 | 0.48 | OM | 10-3 | 正态 | 无 | 16.80000×Nugget+33.6100×Exponential(22950) | 16.8000 | 5.80 | N | 10-3 | 正态 | 无 | 0.052000×Nugget+0.105000×Exponential(29940) | 0.05200 | 0.32 | P | 10-3 | 正态 | 无 | 0.002270×Nugget+0.020340×Exponential(6480) | 0.00227 | 0.067 | B | 10-6 | 正态 | 无 | 7.500000×Nugget+73.07000×Exponential(3450) | 7.50000 | 3.87 | Mo | 10-6 | 对数正态 | 对数 | 0.035300×Nugget+0.089300×Gaussian(32614) | 0.03530 | 0.27 |
|
The semivariance function and the compositional error for pH and other soil parameters
|
|
Spatial distribution of pH and other soil parameters change during 2004~2015 in Yixing city
|
|
Histograms showing the frequency of the changing for pH, N and other parameters
|
指标 | 量纲 | 分布类型 | 变换 | 理论半变异函数 | C0 | E | As | 10-6 | 正态 | 无 | 1.367000×Nugget+3.450000×Spherical(16320) | 1.36700 | 7.47 | Cd | 10-6 | 对数正态 | 对数 | 0.015500×Nugget+0.118000×Exponential(9390) | 0.01550 | 0.176 | Cu | 10-6 | 对数正态 | 对数 | 0.022300×Nugget+0.058800×Spherical(57740) | 0.02230 | 0.21 | Pb | 10-6 | 对数正态 | 对数 | 0.000020×Nugget+0.029840×Spherical(1730) | 0.00002 | 0.006 | Zn | 10-6 | 对数正态 | 对数 | 0.018380×Nugget+0.036860×Exponential(11010) | 0.01838 | 0.19 | Se | 10-6 | 对数正态 | 对数 | 0.041400×Nugget+0.175800×Exponential(34848) | 0.04140 | 0.29 |
|
The semivariance function and the compositional error for As and other trace elements
|
|
Spatial distribution of As and heavy metal element change during 2004~2015 in Yixing city
|
|
Histograms showing the frequency of the changing for Cd, Zn and Se
|
[1] |
张豆, 渠丽萍, 张桀滈. 基于生态供需视角的生态安全格局构建与优化——以长三角地区为例[J]. 生态学报, 2019, 39(20):7525-7537.
|
[1] |
Zhang D, Qu L P, Zhang J H. Ecological security pattern construction method based on the perspective of ecological supply and demand:A case study of Yangtze River Delta[J]. Acta Ecologica Sinica, 2019, 39(20):7525-7537.
|
[2] |
Teng Y G, Wu J, Lu S J, et al. Soil and soil environmental quality monitoring in Chinaa review[J]. Environment International, 2014, 69:177-199.
|
[3] |
Saby N P, Bellamy P H, Morvan X, et al. Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content[J]. Global Change Biology, 2008, 14:2432-2442.
|
[4] |
Lark R M, Bellamy P H. Rawlines BGS patio-temporal variability of some metal concentrations in the soil of eastern Englandand implications for soil monitoring[J]. Geoderma, 2006, 133:363-379.
|
[5] |
解庆锋, 周小果, 王振峰, 等. 河南省土壤环境监测背景点位布设参考区域划分研究[J]. 物探与化探, 2021, 45(5):1164-1170.
|
[5] |
Xie Q F, Zhou X G, Wang Z F, et al. Reference area division for background point arrangement in soil environmental monitoring in Henan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1164-1170.
|
[6] |
王平, 奚小环. 全国农业地质工作的蓝图:“农业地质调查规划要点”评述[J]. 中国地质, 2004, 31(S1):11-15.
|
[6] |
Wang P, Xi X H. Blueprint of national agricultural geological workComment on "key points of agricultural geological survey planning"[J]. Geology in China, 2004, 31(S1):11-15.
|
[7] |
Li M, Xi X H, Cheng H X, et al. National multi-purposeregional geochemical survey in China[J]. Journal of Geochemical Exploration, 2014, 139:21-30.
|
[8] |
邵文静, 宋垠先, 王成, 等. 近30年来苏南耕地土壤pH时空变化特征及影响因素分析[J]. 高校地质学报, 2016, 22(2):264-273.
|
[8] |
Shao W J, Song Y X, Wang C, et al. Spatial-temporal variation and associated driving factors of pH values in soils in the past 30 years in the Southern Jiangsu Province[J]. Geological Journal of China Universities, 2016, 22(2):264-273.
|
[9] |
Wang C, Yang Z F, Zhong C, et al. Temporal-spatial variation and sourceapportionment of soil heavy metals in the representative river-alluviation depositionalsystem[J]. Environmental Pollution, 2016, 216:18-26.
|
[10] |
廖启林, 崔晓丹, 黄顺生, 等. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 2020, 47(6):1813-1825.
|
[10] |
Liao Q L, Cui X D, Huang S S, et al. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province[J]. Geology in China, 2020, 47(6):1813-1825.
|
[11] |
Chuai X W, Huang X J, Wang W J, et al. Spatialvariability of soil organic carbon and related factors in Jiangsu Province,China[J]. Pedosphere, 2014, 22:404-414.
|
[12] |
Xia X Q, Yang Z F, Yu T, et al. Detecting changes of soil environmental parameters by statistics and GISA case from the lower Changjiang plain,China[J]. Journal of Geochemical Exploration, 2017, 181:116-128
|
[13] |
全国土壤污染状况调查公报[EB/OL].(2014-04-17) http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
|
[13] |
Report on the national general survey of soil contamination[EB/OL].(2014-04-17) http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
|
[14] |
魏洪斌, 罗明, 吴克宁, 等. 长江三角洲典型县域耕地土壤重金属污染生态风险评价[J]. 农业机械学报, 2021, 52(11):200-209.
|
[14] |
Wei H B, Luo M, Wu K N, et al. Ecological risk assessment of heavy metal pollution in cultivated soil at typical county level in Yangtze River Delta[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11):200-209.
|
[15] |
Corder G W, Foreman D I. Nonparametric statistics:A step-by-step approach[M]. New Jersey: John Wiley & Sons, 2014.
|
[16] |
Zhang C, Mcgrath D. Geostatistical and GIS analyses on soil organic carbonconcentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma, 2004, 119:261-275.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing. GIS-based assessment of the radioactivity levels and risks of soil environment[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1336-1347. |
|
|
|
|