|
|
Application of convolution neural networks in gold exploration and prediction in Shandong Province |
ZHENG Xiao-Cheng1(), ZHANG Ming-Hua1,2, REN-Wei 2() |
1. School of Geophysics and Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China 2. Command Center of Natural Resource Comprehensive Survey, China Geological Survey, Beijing 100083, China |
|
|
Abstract Rapid progress has been made in the application of big data and artificial intelligence technology in the prediction of mineral resources. However, the application of machine learning technology based on convolutional neural networks remains in the exploration and experimental stages, with few practical examples and accomplishments achieved in the exploration and prediction of mineral resources in China. This study proposed applying convolutional neural networks to the exploration of gold deposits. Specifically, a neural network was trained for 2000 rounds using measured geological, mineral, geophysical, and geochemical data collected from a mineralization region covering an area of 3×104 km2 in a gold deposit in Shandong Province. Consequently, a 1D convolutional neural network model with accuracy of 0.95 and a loss rate of 0.11 was obtained. This model was employed to predict the distribution locations of gold deposits (exploration target areas) in other unknown areas in Shandong Province, yielding encouraging outcomes.
|
Received: 22 December 2022
Published: 23 January 2024
|
|
|
|
|
|
Geological map of study area
|
|
Research flow chart
|
| 标签定义 | 定义说明 | 岩性 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 不明地质体 花岗岩 榴辉岩 云母岩 片麻岩 石英砂岩 角闪岩 片岩 辉石正长岩 凝灰岩 角砾岩 安山岩 透闪石片岩 细砂岩 粉砂质黏土 浅粒岩 | 地质构造 | 0 1 2 3 4 | 地质构造不明 向斜 背斜 节理 断层 |
|
Definition of labels for different lithologies and geological structures
|
|
Point region of training set
|
|
Accuracy function and loss function after training
|
|
Verification set data selection point area
|
|
Verification output isoprobability diagram
|
|
Points selected from experimental test set data
|
|
Test output equal probability graph
|
[1] |
赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5):1-10.
|
[1] |
Zhao P D. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 2007, 14(5):1-10.
|
[2] |
袁峰, 李晓晖, 张明明, 等. 隐伏矿体三维综合信息成矿预测方法[J]. 地质学报, 2014, 88(4):630-643.
|
[2] |
Yuan F, Li X H, Zhang M M, et al. A method for three-dimensional comprehensive information mineralization prediction of concealed ore bodies[J]. Journal of Geology, 2014, 88(4):630-643.
|
[3] |
Harris D P. Undiscovered uranium resources and potential supply[C]// Workshop on Concepts of Uranium Resources and Producibility. Washington: Board Mineral Energy Resources,National Academy of Sciences, 1978:51-81.
|
[4] |
Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources, 1993, 2 (2):69-81.
|
[5] |
赵鹏大. “三联式”资源定量预测与评价——数字找矿理论与实践探讨[J]. 地球科学—中国地质大学学报, 2002, 27(5):482-489.
|
[5] |
Zhao P D. Quantitative prediction and evaluation of "Three Linked" resources:A discussion on digital prospecting theory and practice[J]. Earth Science-Journal of China University of Geosciences, 2002, 27(5):482-489.
|
[6] |
赵鹏大, 胡旺亮. 地质异常理论与矿产预测[J]. 新疆地质, 1992, 10(2):93-100.
|
[6] |
Zhao P D, Hu W L. Geological anomaly theory and mineral prediction[J]. Xinjiang Geology, 1992, 10(2):93-100.
|
[7] |
王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10):1399-1403.
|
[7] |
Wang S C. New progress in comprehensive information mineral prediction theory and methodology[J]. Geological Bulletin, 2010, 29(10):1399-1403.
|
[8] |
张勇, 马晓东, 李彦婧, 等. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45 (3):569-575.
|
[8] |
Zhang Y, Ma X D, Li Y J, et al. The application of deep learning to the shale gas content prediction in Nanchuan(South Sichuan)[J]. Geophysical and Geochemical Exploration, 2021, 45 (3):569-575.
|
[9] |
成秋明. 非线性成矿预测理论:多重分形奇异性—广义自相似性—分形谱系模型与方法[J]. 地球科学—中国地质大学学报, 2006, 31(3):337-348.
|
[9] |
Cheng Q M. Nonlinear ore-forming prediction theory:Multifractal singularity-generalized self similarity-fractal lineage model and method[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(3):337-348.
|
[10] |
周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2):327-331,344.
|
[10] |
Zhou Y Z, Li P X, Wang S G, et al. Research background and progress of big data and intelligent deposit models for mineral deposits[J]. Bulletin of Mineral and Rock Geochemistry, 2017, 36(2):327-331,344.
|
[11] |
刘艳鹏, 朱立新, 周永章. 卷积神经网络及其在矿床找矿预测中的应用—以安徽省兆吉口铅锌矿床为例[J]. 岩石学报, 2018, 34(11):3217-3224.
|
[11] |
Liu Y P, Zhu L X, Zhou Y Z. Convolutional neural networks and their application in ore prospecting and prediction:A case study of the Zhaojikou lead-zinc deposit in Anhui Province[J]. Acta Petrologica Sinica, 2018, 34(11):3217-3224.
|
[1] |
WANG Kang, LIU Cai-Yun, XIONG Jie, WANG Yong-Chang, HU Huan-Fa, KANG Jia-Shuai. Seismic wave impedance inversion based on the fully convolutional residual shrinkage network[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1538-1546. |
[2] |
ZHOU Hui, SUN Cheng-Yu, LIU Ying-Chang, CAI Rui-Qian. A method for strong noise suppression based on DC-UNet[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1288-1297. |
|
|
|
|