|
|
Characterization of multi-attitude fractures in tight sandstones in the Yuanba area, northeastern Sichuan Basin |
HUANG Yan-Qing( ) |
Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China |
|
|
Abstract This study proposed a fracture prediction method based on unsupervised clustering of fracture sensitivity attributes to accurately characterize the distribution of fractures with different attitudes in tight sandstones of the Upper Triassic Xujiahe formation in the Yuanba area, northeastern Sichuan. First, the sensitivity of fractures was extracted and selected based on the optimized post-stack seismic data. Then, the convolutional neural network, a deep learning algorithm, was used to learn global massive fault and fracture databases of various types, obtaining the intensities, dip angles, and azimuths of fractures. In combination with high-precision-guided curvature attributes, an unsupervised clustering algorithm based on the Bayesian probability model was used to predict the intensities of fractures with different dip angles through dimensionality reduction using principal component analysis (PCA). The prediction results are highly consistent with both the fracture interpretation results from imaging logs and the geological results. The results of this study show that the third member of the Xujiahe Formation has more developed fractures than the second member. Fractures in the third member include both the fault-induced fractures distributed near the faults in the southeast flank of the Jiulongshan anticline and the fold-induced fractures in the areas with large formation flexures. By contrast, only fault-induced fractures near the faults occur in the second member.
|
Received: 13 July 2022
Published: 27 October 2023
|
|
|
|
|
|
Structural characteristics of Xujiahe Formation in western Yuanba area a—top structure of the third member of the Upper Triassic Xujiahe formation in the western part of Yuanba;b—distribution of gas reservoirs in the Xujiahe formation of the Sichuan Basin and its location in the western part of Yuanba;c—NW direction structural section
|
|
Original seismic profile and enhanced seismic profile
|
|
Original seismic profile and reconstructed seismic profile after frequency division
|
|
Fracture sensitivity properties of the third section of xujiahe sand group in Yuanba area, northeastern Sichuan Basin
|
|
Fracture facies prediction of Xujiahe formation on multi-attribute clustering in the west of Yuanba
|
|
Discrimination principle of dip angle of fracture at each point
|
|
Comparison of fracture interpretation and prediction results of the third section of xujiahe formation in Yuanba area
|
|
Fracture prediction profiles of different occurrence in YL12 well
|
|
Fractures distribution of the important sand group in western Yuanba area
|
[1] |
邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6):979-1007.
|
[1] |
Zou C N, Yang Z, Zhu R K, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6):979 -1007.
|
[2] |
吕雪莹, 蒋有录, 刘景东, 等. 东濮凹陷杜寨地区沙三中下段致密砂岩气藏有效储层物性下限[J]. 地质科技情报, 2017, 36(3):182-188.
|
[2] |
Lyu X Y, Jiang Y L, Liu J D, et al. Lower limits of porosity and permeability of tight sandstone gas reservoirs in the middle-lower 3Es in Duzhai area,Dongpu depression[J]. Geological Science and Technology Information, 2017, 36(3):182-188.
|
[3] |
袁静, 曹宇, 李际, 等. 库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J]. 石油与天然气地质, 2017, 38(5):840-850.
|
[3] |
Yuan J, Cao Y, Li J, et al. Diversities and disparities of fracture systems in the Paleogene in DN gas field,Kuqa Depression,Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):840-850.
|
[4] |
谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
|
[4] |
Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
|
[5] |
代瑞雪, 冉崎, 关旭, 等. 多尺度裂缝地震综合预测方法——以川中地区下寒武统龙王庙组气藏为例[J]. 天然气勘探与开发, 2017, 40(2):38-44.
|
[5] |
Dai R X, Ran Q, Guan X, et al. A comprehensive seismic method for multi- scale fracture prediction:A case study on Lower Cambrian Longwangmiao Formation gas reservoir,Central Sichuan Basin[J]. Natural Gas Exploration and Development, 2017, 40(2):38-44.
|
[6] |
谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4):968-976.
|
[6] |
Xie R, Yan J G, Chen Q. Prestack inversion of anisotropic coefficients and its application in fracture prediction[J]. Geophysical and Geochemical Exploration, 2022, 46(4):968-976.
|
[7] |
刘俊洲, 韩磊, 时磊, 等. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例[J]. 石油与天然气地质, 2021, 42(3):747-754.
|
[7] |
Liu J Z, Han L, Shi L, et al. Seismic prediction of tight sandstone reservoir fractures in XC area,western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3):747-754.
|
[8] |
曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2):180-191.
|
[8] |
Zeng L B, Lyu W Y, Xu X, et al. Development characteristics,formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2):180-191.
|
[9] |
尹川, 杜向东, 赵汝敏, 等. 基于倾角控制的构造导向滤波及其应用[J]. 地球物理学进展, 2014, 29(6):2818-2822.
|
[9] |
Yin C, Du X D, Zhao R M, et al. Dip steered structure oriented filter and ite application[J]. Progress in Geophysics, 2014, 29(6):2818-2822.
|
[10] |
赵明章, 范雪辉, 刘春芳, 等. 利用构造导向滤波技术识别复杂断块圈闭[J]. 石油地球物理勘探, 2011, 46(S1):128-133.
|
[10] |
Zhao M Z, Fan X H, Liu C F, et al. Complex fault-block traps identification with structure oriented filter[J]. OGP, 2011, 46(S1):128-133.
|
[11] |
张璐, 何峰, 陈晓智, 等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏, 2020, 32(2):108-114.
|
[11] |
Zhang L, He F, Chen X Z, et al. Quantitative characterization of fault identification using likelihood attribute based on dip-steering filter control[J]. Lithologic Reservoirs, 2020, 32(2):108-114.
|
[12] |
解淑林, 宁松华, 曾德龙, 等. 倾角构造导向滤波方法识别小断层[J]. 中国锰业, 2017, 35(2):79-81.
|
[12] |
Xie S L, Ning S H, Zeng D L, et al. Recognition of minor faults by dip structure oriented filtering[J]. China’s Manganese Industry, 2017, 35(2):79-81.
|
[13] |
Hoecker C, Fehmers G. Fast structural interpretation with structure-oriented filtering[J]. The Leading Edge, 2002: 21(2):238-243.
|
[14] |
白雪峰, 霍进杰, 朱明, 等. 倾角导向体约束下的储层预测技术[J]. 物探化探计算技术, 2014, 36(1):107-112.
|
[14] |
Bai X F, Huo J J, Zhu M, et al. Reservoir prediction technique on restrain of dip steering cube[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(1):107-112.
|
[15] |
司丽, 王彦辉, 佟洪梅, 等. 基于地震属性体的三维可视化井震匹配断层解释[J]. 油气藏评价与开发, 2013, 3(3):1-4.
|
[15] |
Si L, Wang Y H, Tong H M, et al. 3D visualization well-seismic match fault interpretation based on seismic attribute[J]. Reservoir Evaluation and Development, 2013, 3(3):1-4.
|
[16] |
谢舟, 李斌, 徐红霞, 等. 多属性分析技术在桑塔木油田断块油气藏中的应用[J]. 石油地球物理勘探, 2017, 52(S1):181-188.
|
[16] |
Xie Z, Li B, Xu H X, et al. Seismic multi-attribute analysis used in the development of Sangtamu Oilfield[J]. OGP, 2017, 52(S1):181-188.
|
[17] |
刘丹. 低序级断层描述技术研究及应用——以八面河油田北区为例[J]. 石化技术, 2020, 27(4):122-123.
|
[17] |
Liu D. Research and application of lower-class faults description technology:A case study in the north area of Bamianhe oilfield[J]. Petrochemical Industry Technology, 2020, 27(4):122-123.
|
[18] |
穆龙新, 赵国良, 田中元, 等. 储层裂缝预测研究[M]. 北京: 石油工业出版社, 2009.
|
[18] |
Mu L X, Zhao G L, Tian Z Y, et al. Research on reservoir fracture prediction[M]. Beijing: Petroleum Industry Press, 2009.
|
[19] |
甄宗玉, 郑江峰, 孙佳林, 等. 基于最大似然属性的断层识别方法及应用[J]. 地球物理学进展, 2020, 35(1):374-378.
|
[19] |
Zhen Z Y, Zheng J F, Sun J L, et al. Fault ientification method based on the maximum likelihood attribute and its application[J]. Progress in Geophysics, 2020, 35(1):374-378.
|
[20] |
Hale D. Methods to compute fault images,extract fault surfaces,and estimate fault throws from 3D seismic images[J]. Geophysics, 2013: 78(2):33-43.
|
[21] |
周艳辉, 高静怀. 局部结构熵算法在地震数据不连续性检测中的应用[J]. 煤田地质与勘探, 2007, 35(1):71-73.
|
[21] |
Zhou Y H, Gao J H. Application of local structural entropy measure on the detection of discontimuity of seismic data[J]. Coal Geology & Exploration, 2007, 35(1):71-73.
|
[22] |
何发岐, 梁承春, 陆骋, 等. 鄂尔多斯盆地南缘过渡带致密—低渗油藏断缝体的识别与描述[J]. 石油与天然气地质, 2020, 41(4):710-718.
|
[22] |
He F Q, Liang C C, Lu C, et al. Identification and description of fault-fracture bodies in tight and low permeability reservoirs in transitional zone at the south margin of Ordoc Basin[J]. Oil & Gas Geology, 2020, 41(4):710-718.
|
[23] |
王世星. 高精度地震曲率体计算技术与应用[J]. 石油地球物理勘探, 2012, 47(6):965-972.
|
[23] |
Wang S X. High-precision calculation of seismic volumetric curvature attributes and its applications[J]. OGP, 2012, 47(6):965-972.
|
[24] |
李维, 陈刚, 王东学, 等. 利用最大正、负曲率识别准噶尔盆地吉木萨尔凹陷芦草沟组甜点段微小断层开启性[J]. 石油地球物理勘探, 2022, 57(1):184-193.
|
[24] |
Li W, Chen G, Wang D X, et al. Identification of micro fault opening in sweet-spot member of Lucaogou Formation in Jimusar Sag of Junggar Basin by maximum positive and negative curvature[J]. OGP, 2022, 57(1):184-193.
|
[1] |
XIE Rui, YAN Jian-Guo, CHEN Qi. Prestack inversion of anisotropic coefficients and its application in fracture prediction[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 968-976. |
[2] |
ZHU Yan, HAN Xiang-Yi, YUE Xin-Xin, YANG Chun-Feng, CHANG Wen-Xin, XING Li-Juan, LIAO Jing. Research and application of brittleness logging evaluation method to tight sandstone reservoirs:Exemplified by Weibei oilfield in Ordos Basin[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1239-1247. |
|
|
|
|