|
|
Migration of heavy metals in the soil-tea plant system and health risks of drinking tea: A case study of Qiongzhong County, Hainan Province |
GONG Qiu-Li1,2( ), YANG Jian-Zhou1,2, WANG Zhen-Liang1,2, YAN Hui3 |
1. Key Laboratory of Geochemical Exploration of Ministry of Natural Resources, Langfang 065000, China 2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (CAGS), Langfang 065000, China 3. Changsha Supervision and Inspection Center of Mineral Resources, Ministry of Natural Resources, Changsha 410007, China |
|
|
Abstract This study sampled the soil and the corresponding roots, stems, and leaves (including large leaves, new leaves, and sprouts) of tea plants from three ecological tea plantations in Qiongzhong County, Hainan Province. Based on these samples, this study investigated the migration of heavy metals in the soil-tea plant system and analyzed the migration patterns of heavy metals and the health risks caused by heavy metals in tea. As indicated by the results, the Pb, Cr, Cd, As, and Hg concentrations in the soil are slightly higher than the background values of corresponding soil elements in Hainan, showing non-significant accumulation. The enrichment of heavy metals varies significantly in different organs of tea plants. Specifically, Cr, Zn, Pb, Hg, and Cd are enriched in roots, while Cu and Ni are enriched in leaves; Pb, Cd, and Hg have higher concentrations in large leaves than in new leaves and sprouts, indicating that these elements are enriched with the growth of leaves; Cu, Ni, and Zn have higher concentrations in sprouts than in leaves, showing that these elements are enriched in the growing parts of leaves. Bio-concentration factors (BCF) indicate that soil physicochemical composition, heavy metal species, and leaf age have effects on the absorption of heavy metals by tea leaves. The results of the risk assessment show that the target hazard quotients (HQ) and hazard indices (HI) of all samples are less than 1, indicating acceptable health risks caused by heavy metals in tea. This study can provide a scientific basis for the prevention and control of heavy metals in tea plantations and has a positive guiding significance for managing tea plantations and ensuring the health of tea consumers.
|
Received: 20 June 2022
Published: 05 July 2023
|
|
|
|
|
|
The position map of soil and corresponding plant samples in the study area
|
样品类型 | 分析项目 | 分析方法 | 检出限 | 单位 | 土壤 | Cd | 等离子体质谱法 | 30 | 10-9 | | Pb | 等离子体质谱法 | 2 | 10-6 | | As | 原子荧光光谱法 | 1 | 10-6 | | Hg | 原子荧光光谱法 | 0.5 | 10-9 | | Cr | 等离子体光学发射光谱法 | 5 | 10-6 | | Corg | 高频燃烧—红外碳硫仪 | 0.1 | % | | pH | 电位法 | 0.1 | | 植物 | Cd | 等离子体质谱法 | 3 | 10-9 | | Cu | 等离子体质谱法 | 0.05 | 10-6 | | Pb | 等离子体质谱法 | 0.02 | 10-6 | | Ni | 等离子体质谱法 | 0.05 | 10-6 | | As | 等离子体质谱法 | 10 | 10-6 | | Hg | 等离子体质谱法 | 1 | 10-9 | | Zn | 等离子体质谱法 | 0.5 | 10-6 | | Cr | 等离子体质谱法 | 0.05 | 10-6 |
|
Analytical methods and corresponding detection limit of analyzed indicators
|
参数 | w(Pb)/10-6 | w(Cr)/10-6 | w(Cd)/10-6 | w(As)/10-6 | w(Hg)/10-6 | w(Corg)/% | pH | 最小值 | 19.5 | 6.18 | 0.028 | 0.839 | 0.026 | 0.826 | 4.2 | 最大值 | 41.3 | 130.90 | 0.083 | 5.11 | 0.131 | 2.35 | 5.04 | 平均值 | 30.5 | 36.50 | 0.043 | 1.99 | 0.041 | 1.27 | 4.65 | 中位值 | 30.6 | 23.70 | 0.040 | 1.75 | 0.034 | 1.19 | 4.65 | 变异系数/% | 18.7 | 100.5 | 34.1 | 48.8 | 58.0 | 28.0 | 4.2 | 海南土壤背景[14] | 24.4 | 27.5 | 0.04 | 1.34 | 0.02 | | | 农用地土壤环 境筛选值[15] | 70 | 150 | 0.3 | 40 | 1.3 | | |
|
Basic statistics of heavy metals in soils of the study area
|
|
Heavy metals content in different organs of tea trees in the study area
|
项目 | 新叶 | 嫩芽 | 安全限量/ 10-6 | 依据标准 | 含量范围 /10-6 | 平均值 /10-6 | 含量范围 /10-6 | 平均值 /10-6 | Cr | 0.22~1.88 | 0.77 | 0.16~1.64 | 0.59 | 5.0 | 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003) | As | 0.02~0.19 | 0.06 | 0.03~0.14 | 0.05 | 2.0 | 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003) | Cd | 0.02~0.04 | 0.03 | 0.01~0.04 | 0.02 | 1.0 | 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003) | Hg | 0.0018~0.003 | 0.0025 | 0.0018~0.0035 | 0.0024 | 0.3 | 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003) | Pb | 0.02~0.41 | 0.12 | 0.01~0.26 | 0.08 | 5.0 | 中华人民共和国国家标准《食品安全国家标准食品中污染物限量》(GB 2762—2017 )、中华人民共和国农业行业标准《无公害食品茶叶》(NY5244—2004) | Cu | 15.20~22.30 | 18.90 | 16.10~24.20 | 20.23 | 30.0 | 中华人民共和国农业行业标准《绿色食品茶叶》(NY/T 288—2018) |
|
Distribution of heavy metals in young leaves and sprouts of tea
|
植物器 官类型 | BCF (Pb) | BCF (Cr) | BCF (Cd) | BCF (As) | BCF (Hg) | 范围 | 平均值 | 变异 系数 | 范围 | 平均值 | 变异 系数 | 范围 | 平均值 | 变异 系数 | 范围 | 平均值 | 变异 系数 | 范围 | 平均值 | 变异 系数 | 根 | 8.91~64.5 | 33.4 | 42.6 | 6.76~79.9 | 28.4 | 80.5 | 224~2051 | 660 | 63.1 | | | | 6.11~138 | 46.0 | 68.4 | 茎 | 1.64~23.4 | 10.1 | 64.7 | 0.87~35.7 | 9.38 | 106 | 211~593 | 346 | 31 | 0.00~5.02 | 0.82 | 197 | 3.82~21.04 | 13.2 | 31.3 | 老叶 | 1.42~4.85 | 3.03 | 46.8 | 4.47~16.9 | 12.6 | 38.1 | 43.4~85.7 | 57.6 | 31.5 | 0.00~0.57 | 0.11 | 224 | 14.9~19.7 | 16.6 | 11.9 | 新叶 | 0.05~1.49 | 0.41 | 108 | 0.37~11.2 | 2.70 | 99.0 | 25.7~135 | 75.2 | 43.2 | 0.45~9.64 | 3.40 | 62.0 | 2.29~9.10 | 6.69 | 27.0 | 嫩芽 | 0.03~0.93 | 0.26 | 103 | 0.43~5.12 | 1.89 | 70.7 | 27.0~108 | 55.2 | 44.5 | 0.74~8.94 | 3.25 | 60.9 | 1.91~10.4 | 6.62 | 34.5 |
|
Bioaccumulation factors of the five heavy metals in different organs of tea
|
|
Correlation of heavy metal content in new leaves and buds of tea with soil heavy metal, pH and Corg note: correlations are significant at p < 0.05 (*) or p < 0.01 (**).
|
茶叶类型 | 参数 | Cu | Pb | Zn | Cr | Ni | Cd | As | Hg | 嫩芽 | 最小值 | 8.78×10-4 | 6.29×10-7 | 1.25×10-3 | 3.48×10-6 | 3.64×10-4 | 2.16×10-7 | 1.54×10-6 | 1.55×10-7 | | 最大值 | 1.32×10-3 | 1.64×10-5 | 1.96×10-3 | 3.57×10-5 | 1.26×10-3 | 1.19×10-6 | 6.34×10-6 | 3.01×10-7 | | 平均值 | 1.10×10-3 | 5.00×10-6 | 1.61×10-3 | 1.28×10-5 | 5.85×10-4 | 5.89×10-7 | 2.45×10-6 | 2.06×10-7 | 新叶 | 最小值 | 8.29×10-4 | 1.19×10-6 | 1.15×10-3 | 4.79×10-6 | 3.01×10-4 | 4.31×10-7 | 1.04×10-6 | 1.55×10-7 | | 最大值 | 1.22×10-3 | 2.58×10-5 | 1.75×10-3 | 4.09×10-5 | 1.28×10-3 | 1.13×10-6 | 8.60×10-6 | 2.58×10-7 | | 平均值 | 1.03×10-3 | 7.76×10-6 | 1.37×10-3 | 1.68×10-5 | 5.55×10-4 | 7.56×10-7 | 2.66×10-6 | 2.13×10-7 |
|
Estimated daily intake (EDI) of heavy metal for adults associated with the consumption of infusions of young tea leaves and sprouts from the tea plantations in Qiongzhong Countymg·(kg·d)-1
|
|
The calculated target hazard quotients (HQ) of heavy metals and its proportion caused by drinking tea in the study area
|
[1] |
De Oliveira L M, Das S, Da Silva E B, et al. Metal concentrations in traditional and herbal teas and their potential risks to human health[J]. Science of the Total Environment, 2018, 633:649-657.
|
[2] |
Zhang J, Yang R, Li Y, et al. Distribution,accumulation,and potential risks of heavy metals in soil and tea leaves from geologically different plantations[J]. Ecotoxicology and Environmental Safety, 2020, 195:110475.
|
[3] |
Zhang J, Yang R, Chen R, et al. Multi-elemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou Province,SW China[J]. Molecules, 2018, 23(11):3013.
|
[4] |
樊伟伟, 何进武, 陈冬梅, 等. 海南茶产业发展现状及发展策略研究[J]. 农产品加工, 2021(12):95-98.
|
[4] |
Fan W W, He J W, Chen D M, et al. Current situation and development strategy of tea industry in Hainan[J]. Farm Products Processing, 2021(12):95-98.
|
[5] |
周国华, 曾道明, 贺灵, 等. 福建铁观音茶园生态地球化学特征[J]. 中国地质, 2015, 42(6):2008-2018.
|
[5] |
Zhou G H, Zeng D M, He L, et al. Eco-geochemical characteristics of the Tieguanyin tea gardens in Fujian Province[J]. Geology in China, 2015, 42(6):2008-2018.
|
[6] |
孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤—茶树体系中重金属的生物有效性. 环境化学, 2020, 39(10):2765-2776.
|
[6] |
Sun J W, Hu G R, Yu R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, 39(10): 2765-2776.
|
[7] |
王峰, 单睿阳, 陈玉真, 等. 闽中某矿区县茶园土壤和茶叶重金属含量及健康风险[J]. 中国环境科学, 2018, 38(3):1064-1072.
|
[7] |
Wang F, Shang R Y, Chen Y Z, et al. Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine county in central Fujian province[J]. China Environmental Science, 2018, 38(3):1064-1072.
|
[8] |
杜蕾, 郎红, 邵辉, 等. 茶叶中重金属含量影响因素的研究进展[J]. 安徽农学通报, 2018, 24(24):40-42.
|
[8] |
Du L, Lang H, Shao H, et al. Progress in the impact factors of heavy metal in tea[J]. Anhui Agricultural Science Bulletin, 2018, 24(24):40-42.
|
[9] |
张清海, 龙章波, 林绍霞, 等. 贵州云雾茶园土壤高含量重金属和砷在茶叶中的积累与浸出特征[J]. 食品科学, 2013, 34(8):212-215.
|
[9] |
Zhang Q H, Long Z B, Lin S X, et al. Distribution of heavy metals in soil and tea from yunwu tea area in guizhou province and diffusion characteristics of heavy metals in tea infusion[J]. Food Science, 2013, 34(8):212-215.
|
[10] |
张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3):33-42.
|
[10] |
Zhang Q, Bai J F, Wang Y. Analytical scheme and quality monitoring system for China geochemical baselines[J]. Earth Science Frontiers, 2012, 19(3):33-42.
|
[11] |
Wei J, Cen K. Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing,China[J]. Science of the Total Environment, 2020, 703:134747.
|
[12] |
Zhang J, Yang R, Chen R, et al. Accumulation of heavy metals in tea leaves and potential health risk assessment: A case study from Puan County,Guizhou Province,China[J]. International Journal of Environmental Research and Public Health, 2018, 15(1):133.
|
[13] |
杨剑洲, 王振亮, 高健翁, 等. 海南省集约化种植园中谷物,蔬菜和水果中重金属累积程度及健康风险[J]. 环境科学, 2021, 42(10): 4916-4924.
|
[13] |
Yang J Z, Wang Z L, Gao J W, et al. Accumulation and health risk of heavy metals in cereals,vegetables,and fruits of intensive plantations in Hainan Province[J]. Environmental Science, 2021, 42(10): 4916-4924.
|
[14] |
傅杨荣, 杨奕, 何玉生, 等. 中华人民共和国多目标区域地球化学调查报告:海南岛[R]. 海南地质调查研究院, 2008.
|
[14] |
Fu Y R, Yang Y, He Y S, et al. Multi-purpose regional geochemical report of Hainan Island[R]. Hainan Institute of Geological Survey, 2008.
|
[15] |
生态环境部. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S].
|
[15] |
Ministry of Ecology and Environment of PRC. GB 15618—2018 Soil environmental quality-risk control standard for soil contamination of agricultural land[S].
|
[16] |
Yang X, Ni K, Shi Y, et al. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture,Ecosystems and Environment, 2018, 252:74-82.
|
[17] |
Yemane M, Chandravanshi B S, Wondimuc T. Levels of essential and non-essential metals in leaves of the tea plant (Camellia sinensis L.) and soil of Wushwush farms,Ethiopia[J]. Food Chemistry, 2008, 107(3):1236-1243.
|
[18] |
Yan P, Shen C, Fan L, et al. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems and Environment, 2018, 254:20-25.
|
[19] |
Liao J, Wen Z, Ru X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province,China[J]. Ecotoxicology and Environmental Safety, 2016, 124:460-469.
|
[20] |
黄玉源, 黄益宗, 李秋霞, 等. 广州市污水灌溉对菜地土壤和蔬菜的影响[J]. 环境化学, 2005(6):102-103.
|
[20] |
Huang Y Y, Huang Y Z, Li Q X, et al. Effects of sewage irrigation on vegetable soil and vegetables in Guangzhou[J]. Environmental Chemistry, 2005, 24(6):102-103.
|
[21] |
NY659—2003茶叶中铬、镉、汞、砷及氟化物限量[S]. 北京: 中国标准出版社, 2003.
|
[21] |
NY659—2003 Limit of chromium, cadmium, mercury, arsenic and fluoride in tea[S]. Beijing: China Standards Press, 2003.
|
[22] |
GB 2762—2017食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
|
[22] |
GB 2762—2017 National food safety standard:Limit of contaminants in food[S]. Beijing: China Standards Press, 2017.
|
[23] |
Gan Y, Wang L, Yang G, et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China[J]. Chemosphere, 2017, 184:1388-1395.
|
[24] |
Cui J, Wang W, Peng Y, et al. Effects of simulated Cd deposition on soil Cd availability,microbial response,and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil[J]. Science of the Total Environment, 2019, 683:782-792.
|
[25] |
Shen X, Huang D, Ren X, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management, 2016, 168:245-251.
|
[26] |
Liu B, Ai S, Zhang W, et al. Assessment of the bioavailability,bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China[J]. Science of the Total Environment, 2017, 609:822-829.
|
[27] |
张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
|
[27] |
Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals,Southwestern,China[J]. Environmental Science, 2020, 41(9): 4197-4209.
|
[28] |
崔邢涛, 王学求, 栾文楼. 河北中南部平原土壤重金属元素存在形态及生物有效性分析[J]. 中国地质, 2015, 42(2):655-663.
|
[28] |
Cui X T, Wang X Q, Luan W L. An analysis of modes of occurrence and biological availability of the heavy metal elements in soil of the central and southern plain in Hebei[J]. Geology in China, 2015, 42(2): 655-663.
|
[29] |
唐豆豆, 袁旭音, 汪宜敏, 等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1):18-26.
|
[29] |
Tang D D, Yuan X Y, Wang Y M, et al. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1):18-26.
|
[30] |
Ma H, Cheng H, Guo F, et al. Distribution of mercury in foliage,litter and soil profiles in forests of the Qinling Mountains,China[J]. Environmental Research, 2022, 211:113017.
|
[31] |
李丽光, 何兴元, 曹志强, 等. 土壤—作物系统中铅的研究进展[J]. 生态学杂志, 2004, 23(1): 78-82.
|
[31] |
Li L G, He X Y, Cao Z Q, et al. Advances in studies on lead in soil-crop system[J]. Chinese Journal of Ecology, 2004, 23(1): 78-82.
|
[32] |
施亚星, 吴绍华, 周生路, 等. 土壤—作物系统中重金属元素吸收、迁移和积累过程模拟[J]. 环境科学, 2016, 37(10):3996-4003.
|
[32] |
Shi Y X, Wu S H, Zhou S L, et al. Simulation of the absorption,migration and accumulation process of heavy metal elements in soil-crop system[J]. Environmental Science, 2016, 37(10): 3996-4003.
|
[33] |
Karak T, Abollino O, Bhattacharyya P, et al. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.)[J]. Chemosphere, 2011, 85(6):948-960.
|
[34] |
杨钦沾, 陈孟君, 温恒, 等. 茶叶中10种重金属浸出率[J]. 福建农业学报, 2015, 30(4):406-410.
|
[34] |
Yang Q Z, Chen M J, Wen H, et al. Leaching rates of ten heavy metals in tea[J]. Fujian Journal of Agricultural Sciences, 2015, 30(4):406-410.
|
[35] |
Sun J, Hu G, Liu K, et al. Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi,China[J]. Environmental Geochemistry and Health, 2019, 41(3):1291-1302.
|
[36] |
赵佐平, 付静, 岳思羽, 等. 陕南茶园茶叶品质分析及重金属含量现状评估[J]. 农业工程学报, 2020, 36(16):201-211.
|
[36] |
Zhao Z P, Fu J, Yue S Y, et al. Analysis of tea quality and assessment of heavy metal content status in tea plantations of southern Shaanxi Province,China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 201-211.
|
[37] |
Zheng S, Wang Q, Yuan Y, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, 2020, 316:126213.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
FAN Hai-Yin, SONG Rui-Rui, YU Lin-Song, TENG Yong-Bo, WAN Fang, ZHANG Xiu-Wen, LI Sheng-Yu, ZHAO Chuang. Heavy metal pollution and health risk assessment of groundwater in a typical chemical industry park in northwestern Shandong, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1326-1335. |
|
|
|
|